Systemic Sclerosis is a Complex Disease Associated Mainly with Immune Regulatory and Inflammatory Genes



Jingxiao Jin 1, 2, §, Chou Chou 1, Maria Lima 1, 3, Danielle Zhou 1, 4, Xiaodong Zhou*, 1
1 University of Texas Medical School at Houston, USA
2 Duke University, USA
3 Rice University, USA
4 Washington University, USA


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 659
Abstract HTML Views: 628
PDF Downloads: 195
Total Views/Downloads: 1482
Unique Statistics:

Full-Text HTML Views: 417
Abstract HTML Views: 298
PDF Downloads: 128
Total Views/Downloads: 843



© Jin et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, MSB5270, Houston Texas 77030, USA; Tel: 713-500-6900; Fax: 713-500-0580; E-mail: xiaodong.zhou@uth.tmc.edu
§ First two authors contribute equally to the paper.


Abstract

Systemic sclerosis (SSc) is a fibrotic and autoimmune disease characterized clinically by skin and internal organ fibrosis and vascular damage, and serologically by the presence of circulating autoantibodies. Although etiopathogenesis is not yet well understood, the results of numerous genetic association studies support genetic contributions as an important factor to SSc. In this paper, the major genes of SSc are reviewed. The most recent genome-wide association studies (GWAS) are taken into account along with robust candidate gene studies. The literature search was performed on genetic association studies of SSc in PubMed between January 2000 and March 2014 while eligible studies generally had over 600 total participants with replication. A few genetic association studies with related functional changes in SSc patients were also included. A total of forty seven genes or specific genetic regions were reported to be associated with SSc, although some are controversial. These genes include HLA genes, STAT4, CD247, TBX21, PTPN22, TNFSF4, IL23R, IL2RA, IL-21, SCHIP1/IL12A, CD226, BANK1, C8orf13-BLK, PLD4, TLR-2, NLRP1, ATG5, IRF5, IRF8, TNFAIP3, IRAK1, NFKB1, TNIP1, FAS, MIF, HGF, OPN, IL-6, CXCL8, CCR6, CTGF, ITGAM, CAV1, MECP2, SOX5, JAZF1, DNASEIL3, XRCC1, XRCC4, PXK, CSK, GRB10, NOTCH4, RHOB, KIAA0319, PSD3 and PSOR1C1. These genes encode proteins mainly involved in immune regulation and inflammation, and some of them function in transcription, kinase activity, DNA cleavage and repair. The discovery of various SSc-associated genes is important in understanding the genetics of SSc and potential pathogenesis that contribute to the development of this disease.

Keywords: CD247, genetics, genome-wide association studies, HLA class genes, IRF5, scleroderma, STAT4, Systemic sclerosis..