RESEARCH ARTICLE
The ANKH ΔE490Mutation in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease (CPPDD) Affects Tissue Non-specific Alkaline Phosphatase (TNAP) Activities
John Wang1, Hing Wo Tsui1, Frank Beier2, Kenneth P.H. Pritzker3, Robert D. Inman1, 4, Florence W.L. Tsui* , 1, 4
Article Information
Identifiers and Pagination:
Year: 2008Volume: 2
First Page: 23
Last Page: 30
Publisher ID: TORJ-2-23
DOI: 10.2174/1874312900802010023
Article History:
Received Date: 28/2/2008Revision Received Date: 18/3/2008
Acceptance Date: 28/3/2008
Electronic publication date: 10/4/2008
Collection year: 2008

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
ANKH (human homolog of progressive ankylosis) regulates inorganic pyrophosphate (PPi) transport. Dominant ANKH mutations were detected in at least five multiplex families with calcium pyrophosphate dihydrate crystal deposition disease (CPPPD). The objective of this study is to assess the functional consequences of one CPPDD-associated ANKH mutation (ΔE490) in chondrogenic ATDC5 cells. Stable ATDC5 transfectants bearing myc-tagged constructs of wild-type ANKH, mutant ANKH (ΔE490) and neo controls were generated. Upon ITS (insulin, transferrin and selenium) induction, expression of chondrocyte markers including alkaline phosphatase activity in the various transfectants was assessed. The ANKH ΔE490- transfectants had low alkaline phosphatase activities throughout ITS treatment due to lower TNAP protein expression and the presence of intracellular low-molecular-weight inhibitors. Our results suggest that the interplay of ANKH and TNAP activities is tightly regulated.