

# **Rituximab for the Treatment of Common Variable Immunodeficiency (CVID)** with Pulmonary and Central Nervous System Involvement

Patrick-Pascal Strunz<sup>1,\*</sup>, Matthias Fröhlich<sup>1</sup>, Michael Gernert<sup>1</sup>, Eva C. Schwaneck<sup>1</sup>, Lea-Kristin Nagler<sup>1</sup>, Anja Kroiss<sup>1</sup>, Hans-Peter Tony<sup>1</sup> and Marc Schmalzing<sup>1</sup>

<sup>1</sup>Department of Medicine II, Division of Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany

| Article History | Received: September 7, 2020 | Revised: January 13, 2021 | Accepted: January 28, 2021 |
|-----------------|-----------------------------|---------------------------|----------------------------|
|                 |                             |                           |                            |

# **1. GENETIC DIAGNOSTICS**

There are several mutations described which can cause a CVID-like syndrome and can predispose to GLILD like LRBA, CTLA4, RAG1, BIRC4, NFKB1 or KMT2D [1 - 9]. Genetic testing was performed on one patient revealing a gain of function mutation of STAT3. GOF-STAT3-syndrome is a relatively new described syndrome and can cause a CVID-like disease with hypogammaglobulinemia, autoimmune features, lymphoproliferation, and interstitial lung disease [10].

## 2. HISTOPATHOLOGIC FINDINGS

Patient 1: In 2010, a lung biopsy was performed in an external clinic revealing dense lymphoid infiltrates in histologic testing. A follicular arrangement of CD20-positive B cells and CD3-positive T cells was described without S100 or CD30 positive cells. Re-biopsy in 2013, presented a heterogeneous pattern consisting of NSIP and chronic and partly follicular bronchiolitis. No evidence of malignancy.

<u>Patient 2</u>: In 2009, we performed a biopsy on the right lower lobe of the lung. Histologic examination presented medium-sized epithelioid cell granuloma. In the granuloma wall, loosely scattered CD20 positive B lymphocytes mixed with CD5 positive T cells were found. Poorly present plasma cells without light chain restriction. No evidence of malignancy.

<u>Patient 3:</u> VATS with wedge resection for histologic sampling was performed in 2017. Wedge resection on the upper lobe showed the histologic image of a lymphoplasmohistiocytic infiltration. Wedge resection of the left lower lobe also presented the same chronic lymphoplasmohistiocytic infiltration. Histologic presentation of a mixed image of dominating CD5-positive T cells with CD20-positive B cells in the background with partly loose and follicular aggregation. Low level of plasma cells without light chain restriction. No evidence of malignancy.

## 3. B CELL REGENERATION CORRELATED WITH GLILD RELAPSE AFTER RITUXIMAB-TREATMENT

Table 1. Flow cytometric analysis of peripheral blood during rituximab-therapy.

| Flow cytometric analysis                                                                                                                                                                    |                                                                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Patient 1:                                                                                                                                                                                  |                                                                 |  |  |  |
| 4x rituximab 375mg/m <sup>2</sup> 09/2007                                                                                                                                                   |                                                                 |  |  |  |
| Flow cytometry pre-rituximab 06/2006:<br>14% B cells, 27% naïve CD10 <sup>+</sup> B cells, low count of memory B cells, 1.3%<br>postswitch memory B cells, normal count of CD21low B cells. | Flow cytometry post-rituximab 10/2007:<br>No B cells detectable |  |  |  |
| 2x rituximab 1g abs. 08/2010                                                                                                                                                                |                                                                 |  |  |  |
| Flow cytometry pre-rituximab 06/2010:<br>5% B cells. No memory B cells, normal count of transitional B cells.                                                                               | Flow cytometry post-rituximab 09/2010:<br>No B cells detectable |  |  |  |
| 2x rituximab 1g abs. 08/2014                                                                                                                                                                |                                                                 |  |  |  |
| Flow cytometry pre-rituximab 03/2014:<br>4.7% B cells. No increase of transitional B cells, complete loss of memory B cells.                                                                | Flow cytometry post-rituximab 09/2014:<br>No B cells detectable |  |  |  |
| 2x rituximab 1g abs. 09/2015                                                                                                                                                                |                                                                 |  |  |  |

#### ii The Open Rheumatology Journal, 2021, Volume 15

| Flow cytometric analysis                                                 |                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Flow cytometry pre-rituximab 01/2015:                                    | Flow cytometry post-rituximab 05/2016:                       |  |  |  |  |  |
| 1% B cells. No further sub differentiation possible.                     | No B cells detectable                                        |  |  |  |  |  |
| 2x rituximab 1g abs. 06/2017                                             |                                                              |  |  |  |  |  |
| Flow cytometry pre-rituximab 08/2016:                                    | Flow cytometry post-rituximab:                               |  |  |  |  |  |
| Very low count of B cells                                                | Not performed                                                |  |  |  |  |  |
| 2x rituximab 1g abs. (                                                   | 1/2019                                                       |  |  |  |  |  |
| Flow cytometry pre-rituximab 10/2018:                                    | Flow cytometry post-rituximab                                |  |  |  |  |  |
| Very low count of B cells (<0.1%)                                        | Not performed                                                |  |  |  |  |  |
| 2x rituximab 1g abs. 10/2019                                             |                                                              |  |  |  |  |  |
| Flow cytometry pre-rituximab                                             | Flow cytometry post-rituximab 12/2019:                       |  |  |  |  |  |
| Not performed                                                            | No B cells detectable                                        |  |  |  |  |  |
| Patient 2:                                                               |                                                              |  |  |  |  |  |
| 2x rituximab 1g abs. 09/2014                                             |                                                              |  |  |  |  |  |
| Flow cytometry pre-rituximab 02/2014:                                    | Flow cytometry post-rituximab 11/2014:                       |  |  |  |  |  |
| 7% B cells, 5.2% transitional B cells, 8.6% preswitch memory B cells. 1% | No B cells detectable                                        |  |  |  |  |  |
| postswitch memory B cells. No CD21-positive population.                  |                                                              |  |  |  |  |  |
| 2x rituximab 1g abs. (                                                   | 2/2017                                                       |  |  |  |  |  |
| Flow cytometry pre-rituximab 08/2016:                                    | Flow cytometry post-rituximab 08/2017:                       |  |  |  |  |  |
| 3% B cells                                                               | No B cells detectable                                        |  |  |  |  |  |
| Patient 3:                                                               |                                                              |  |  |  |  |  |
| 2x rituximab 1g abs. (                                                   | 7/2017                                                       |  |  |  |  |  |
| Flow cytometry pre-rituximab 06/2017:                                    | Flow cytometry post-rituximab 11/2017:                       |  |  |  |  |  |
| 2.7% B cells. No preswitch and postswitch memory B cells. Increase of    | 1.5% B cells                                                 |  |  |  |  |  |
| transitional B cells, no increase of CD21low cells.                      |                                                              |  |  |  |  |  |
| 2x rituximab 1g abs. 01/2018                                             |                                                              |  |  |  |  |  |
| Flow cytometry pre-rituximab 11/2017:                                    | Flow cytometry post-rituximab 03/2018:                       |  |  |  |  |  |
| 1.5% B cells                                                             | Low count of B cells (0.2%), no sub differentiation possible |  |  |  |  |  |
| 2x rituximab 1g abs. 09/2018                                             |                                                              |  |  |  |  |  |
| Flow cytometry pre-rituximab 08/2018:                                    | Flow cytometry post-rituximab 12/2018:                       |  |  |  |  |  |
| 8.5% B cells.                                                            | 1,7% B cells. Almost complete as transitional B cells. 6.2%  |  |  |  |  |  |
|                                                                          | preswitch and no postswitch memory B cells.                  |  |  |  |  |  |

# Table S2. List of GLILD-patients.

| ine                             |
|---------------------------------|
|                                 |
| ituximab                        |
| ituximab                        |
| ximab and azathioprine,         |
| ine<br>ituxin<br>ituxir<br>xima |

# Table S3. Contingency table for cytopenia and GLILD

| -                                  | CVID-patients with autoimmune cytopenia | CVID-patients without autoimmune cytopenia |
|------------------------------------|-----------------------------------------|--------------------------------------------|
| <b>CVID-patients with GLILD</b>    | 5                                       | 1                                          |
| <b>CVID-patients without GLILD</b> | 11                                      | 33                                         |

# REFERENCES

 Alkhairy OK, Abolhassani H, Rezaei N, *et al.* Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol 2016; 36(1): 33-45.

[http://dx.doi.org/10.1007/s10875-015-0224-7] [PMID: 26707784]

[2] Buchbinder D, Baker R, Lee YN, *et al.* Identification of patients with RAG mutations previously diagnosed with common variable

immunodeficiency disorders. J Clin Immunol 2015; 35(2): 119-24. [http://dx.doi.org/10.1007/s10875-014-0121-5] [PMID: 25516070]

[3] Deyà-Martínez A, Esteve-Solé A, Vélez-Tirado N, et al. Sirolimus as an alternative treatment in patients with granulomatous-lymphocytic lung disease and humoral immunodeficiency with impaired regulatory T cells. Pediatr Allergy Immunol 2018; 29(4): 425-32. [http://dx.doi.org/10.1111/pai.12890] [PMID: 29532571]

[4] Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human

subjects with heterozygous germline mutations in CTLA4. Science 2014; 345(6204): 1623-7.

[http://dx.doi.org/10.1126/science.1255904] [PMID: 25213377]

[5] Lawless D, Geier CB, Farmer JR, et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol 2018; 141(6): 2303-6.

[http://dx.doi.org/10.1016/j.jaci.2018.02.007] [PMID: 29477728]

- [6] Li R, Zheng Y, Li Y, et al. Common variable immunodeficiency with genetic defects identified by whole exome sequencing. BioMed Res Int 2018; 20183724630 [http://dx.doi.org/10.1155/2018/3724630] [PMID: 30363934]
- [7] Lindsley AW, Saal HM, Burrow TA, *et al.* Defects of B-cell terminal differentiation in patients with type-1 Kabuki syndrome. J Allergy Clin

Immunol 2016; 137(1): 179-187.e10. [http://dx.doi.org/10.1016/j.jaci.2015.06.002] [PMID: 26194542]

- [8] Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 2018; 142(6): 1932-46. [http://dx.doi.org/10.1016/j.jaci.2018.02.055] [PMID: 29729943]
- [9] Verbsky JW, Hintermeyer MK, Simpson PM, et al. Rituximab and antimetabolite treatment of granulomatous and lymphocytic interstitial lung disease in common variable immunodeficiency. J Allergy Clin Immunol 2020; S0091-6749(20): 31069-1. [http://dx.doi.org/10.1016/j.jaci.2020.07.021] [PMID: 32745555]

 [10] Fabre A, Marchal S, Barlogis V, *et al.* Clinical aspects of stat3 gain-offunction germline mutations: A systematic review. J Allergy Clin Immunol Pract 2019; 7(6): 1958-1969.e9.
[http://dx.doi.org/10.1016/j.jaip.2019.02.018] [PMID: 30825606]

### © 2021 Strunz et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.