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Abstract: Inflammatory rheumatic diseases are characterized by inflammation resulting from the immune dysregulation 
that usually attacks joints, skin and internal organs. Many of them are considered as complex disease that may be 
predisposed by multiple genes and/or genetic loci, and triggered by environmental factors such as microbiome and cellular 
stress. The major histocompatibility complex class I chain-related gene A (MICA) is a highly polymorphic gene that 
encodes protein variants expressed under cellular stress conditions, and these MICA variants play important roles in 
immune activation and surveillance. Recently, accumulating evidences from both genetic and functional studies have 
suggested that MICA polymorphisms may be associated with various rheumatic diseases, and the expression of MICA 
variants may attribute to the altered immune responses in the diseases. The objective of this review is to discuss potential 
genetic associations and pathological relevance of MICA in inflammatory rheumatic diseases that may help us to 
understand pathogenesis contributing to the development of these diseases. 
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INTRODUCTION 

 The major histocompatibility complex class I chain-
related gene A (MICA) is a non-classic HLA gene [1]. 
Similar to classic HLA genes, its DNA sequence is highly 
polymorphic [2]. Two heavily investigated polymorphisms 
of the MICA are one single nucleotide polymorphism (SNP) 
at codon 129 leading to methionine (met) and valine (val) 
substitution, and a tri-nucleotide microsatellite (GCT)n 
starting at codon 293 named MICA-A(x), and an exceptional 
5 repeats with an insertion of guanosine at codon 295 named 
MICA-A5.1. The former leads to a change of binding 
affinity to MICA receptor NKG2D [3], the latter causes 
structure alteration on MICA transmembrane (TM) domain 
[4]. In addition to individual polymorphisms, according to 
haplotypes of the exonic polymorphisms, about 100 MICA 
alleles have been identified [http://www.ebi.ac.uk/ipd/ 
imgt/hla/]. Although, the functional significance of these 
polymorphisms has not been fully defined, some have been 
associated with immune-mediated diseases. 
 The MICA gene encodes a protein that expresses on the 
surface of selective cells such as gut epithelial, fibroblasts 
and endothelial cells [5, 6], and it plays unique roles in 
immune activation and surveillance [7, 8]. Under cellular 
stress conditions, such as infections, tissue injury, pro-
inflammatory signals, and malignant transformation [9-15], 
MICA interacts with its receptor NKG2D found on natural 
killer (NK) cells, NK T cells, γδ T cells, αβ CD8+ T cells,  
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and a minor immune-regulatory subset of CD4+ T cells [14-
22]. Binding of MICA (membrane-bound MICA) with 
NKG2D triggers cell-mediated cytotoxicity and cytokine 
release from NK and T cells [13, 14, 23, 24]. On the other 
hand, the proteolytic cleavage of MICA proteins from 
expressing cells, termed MICA shedding produces soluble 
MICA that may control the immune process by down-
modulating NKG2D expression [25, 26], and facilitate 
expansion of an immunosuppressive CD4+ T-cell subset 
[19]. In addition, MICA can be excreted in exosomes which 
can also down-regulate NKG2D activity [27]. Therefore, the 
balance between membrane-bound MICA and soluble 
MICA/exosomal MICA may control the outcome of immune 
function via NKG2D regulation. 
 Given its complex gene sequence and protein expression 
features, as well as unique functions in immune process, 
studies of MICA in order to understand pathogenesis of 
various immune-mediated diseases are important. 
Accumulating evidences have supported that MICA and its 
signaling pathway are useful biomarker for the measurement 
of disease susceptibility, evaluation of disease progression 
and/or development of therapeutic approaches. This review 
will focus on recent reports of MICA in association with 
inflammatory rheumatic diseases. 

MICA IN RHEUMATOID ARTHRITIS (RA) 

 The first report of MICA in association with RA was 
based on a study of fifty-four Spanish families of affected 
son and daughter and 211 consecutive RA patients, in which 
MICA-A6 was suggested to be protective against RA in the 
shared epitope (SE) positive RA patients [28]. This result 
was immediately replicated by a small Caucasian 
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case/control cohort (90/85) [29]. However, studies of a larger 
RA tri-families of French Caucasian along with an 
independent 100 RA trio families and a German Caucasian 
case-control (90/182) cohort did not confirm such an 
association. Instead, the evidence from the studies showed a 
MICA SNP rs1051794 corresponding to MICA codon 129 
(MICA-129) in association with RA, and it was suggested 
that this SNP was in complete linkage disequilibrium (LD) 
with another functional SNP, rs1051792 that contributes 
differential binding affinity of MICA protein to its receptor 
NKG2D [30]. 
 Although functional studies of these RA-associated 
MICA alleles have not been reported, MICA and NKG2D 
signaling appeared to be aberrant in RA patients [31]. In 
particular, substantial amount of synoviocyte-derived soluble 
MICA was observed in peripheral blood serum samples of 
RA patients [31]. However, it failed to induce down-
modulation of NKG2D on T cells by overcoming opposing 
activity of tumor necrosis factor alpha (TNF-α) and IL-15 
[31]. Increased NKG2D activity in RA patients was 
observed, and that may cause autoreactive T cell stimulation 
which may be responsible to the self-perpetuating pathology 
in RA [31]. 

MICA IN ANKYLOSING SPONDYLITIS (AS) 

 Studies of MICA in AS was first reported in a small case-
control Caucasian cohort (48/50) [32], in which the four-
repetition GCT of the MICA gene (MICA-A4) was found at 
significantly higher frequency in AS [32]. However, another 
study of AS case-control cohort (162/103) indicated that the 
frequency of the MICA-A4 allele was not significantly higher 
in the B27-positive and B27-negative patient groups, as 
compared to the B27-positive and B27-negative control groups, 
respectively [33]. Therefore, the MICA-A4 was considered in 
strong linkage disequilibrium (LD) with HLA-B27. This result 
was contradictive to a report from the studies of Sardinia AS 
(case/control: 82/139), in which a high frequency of MICA-A4 
(80%) was found in HLA-B27-negative AS patients, and that 
was associated with AS [34]. Following MICA-A4 studies, 
Amroun et al. reported an association between MICA-129 
met/met genotype and juvenile AS independent of HLA-B27 
positivity in a case-control Algerian cohort (129/760) [35]. 
Recently, a sequencing study of the exonic haplotypes of the 
MICA alleles was performed in two large case-control cohorts 
of US Caucasian (1070/1003) and Chinese Han (473/536) [36]. 
From the studies, the haplotype allele MICA*007:01 was 
identified as a significant risk allele for AS in both Caucasian 
and Han populations, and MICA*019 was a major risk allele in 
Han AS patients. Conditional analysis of MICA alleles on 
HLA-B27 that unshielded LD effect supported independent 
associations of the MICA*007 and *019 with AS [36]. Of note, 
MICA*007 contains both MICA-A4 and MICA-129-met, 
MICA*019 with MICA-A5 and MICA-129-val compared to 
the common allele MICA*008 with A5.1 and MICA-129-val. 

MICA IN PSORIATIC ARTHRITIS (PSA) AND 
PSORIASIS 

 Studies of MICA in PsA and psoriasis appeared more 
complex. A Spanish study of 65 patients with PsA, 5 
psoriasis, and 177 healthy controls was the first to show 

MICA-A9 as a risk to PsA [37]. This observation was 
replicated in a case-control study (110/110) of another 
Spanish cohort [38]. Further studies in Jewish (Caucasian) 
cases and controls (52/73) suggested that a higher frequency 
of MICA-A9 in PsA patients is in LD with HLA-B alleles 
(B*5701, B*3801), but the latter were not increased in PsA 
[39]. Two studies of Chinese populations including each of 
the case-control studies of PsA (102/210) and psoriasis 
(105/160) indicated no association [40, 41]. 
 Considering ethnic heterogeneity in genetics, Song et al. 
performed a meta-analysis using 10 studies involving 2,002 
cases and 1,933 controls of European and Asian [42]. The 
results showed that MICA-A9 was significantly associated 
with PsA and psoriasis patients in the entire study 
population, and with PsA in Europeans and psoriasis in 
Asian populations [42]. 
 In studies of the association between PsA clinical forms 
and MICA [43]. Two hundred and twenty-six patients were 
classified as asymmetric oligoarthritis (AO), symmetric 
poly-arthritis (PA) and spondylitis (SP), or combinations 
(PA/SP, OA/SP). Compared to 225 normal controls, only the 
combined PA/SP subset showed a significantly positive 
association with MICA-A9 [43]. Another study in Canadian 
Caucasian with 745 patients and 547 controls indicated that 
MICA-129-met/met was a marker of skin manifestations of 
PsA that was independent of HLA-B and -C [44]. 
 A common concern of these genetic studies is relatively 
small sample sizes [45]. Recently, a large-scale fine-mapping 
study of psoriasis vulgaris (PsV) risk in the HLA region in 
9,247 PsV patients and 13,589 controls of European descent 
was performed by imputing HLA-class I and II and MICA 
genes from SNP genotype data. HLA-C*06:02, *12:03, 
HLA-B amino acid positions 67 and 9, HLA-A amino acid 
position 95, and HLA-DQα1 amino acid position 53 showed 
significant association with PsV, but not MICA [46]. 

SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) 

 In a study of case-control cohort (48/158) of Italian 
population, the positive associations of MICA-A5 and 
MICA-A5.1 and negative association of MICA-A9 with SLE 
were observed, and which appeared independently from 
HLA-DR3 and DQ2 [47]. The increased MICA-A5.1 in SLE 
was also reported in Czech population (case/control: 123/96) 
[48]. Recently, a GWAS (case/control: 183/1288) of Central 
European population reported an association of cutaneous 
lupus erythematosus with SNP rs2844559 that is located 27 
kb proximal of the MICA gene [49]. 
 A Japanese study of cases and controls (SLE/RA/control: 
716/327/351) indicated that the MICA129Met;A9 haplotype 
was associated with SLE, and there was an additive genetic 
effect between the MICA129Met;A9 haplotype and HLA-
DRB1*15:01 [50]. However, the associations were not 
replicated in a Spanish study (case/control: 333/361) [51]. 
 An increased expression of MICA was observed in SLE 
patients' kidneys [52]. The MICA 129Met;A9 was shown to 
suppress NK cell-mediated cytotoxicity, but it stimulated the 
release of IFNγ [50]. In addition, increased NKG2D(+) 
CD4(+) T cells were inversely correlated with disease 
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activity in juvenile-onset systemic lupus erythematosus 
(SLE) [53]. 

MICA IN BEHÇET’S DISEASE (BD) 

 Association between the MICA gene and BD appeared 
also controversial. Mizuki et al. first reported a significantly 
higher frequency of MICA-A6 in BD patients of Japanese 
cohort (case/control: 77/103) [54], which was independently 
supported by several other studies including a Greek 
(case/control: 38/40) [55] and a Korean cohort (108/204) 
[56], as well as a study of juvenile BD (jBD) of Italian 
cohort (18/20) [57]. However, the follow-up studies by 
Mizuki et al. indicated that the previously reported MICA-
A6 association was due to LD effect of HLA-B51 [58-60], 
and this notion was in consistent with the studies of Spanish 
case-control cohort (58/194) [61] and Italian (69/130) [62]. 
 An imputation with SNPs and meta-analysis of the 
extended HLA locus in 2 independent BD cohorts 
(case/control Turkish: 503/504 and Italian: 144/1270) 
showed that a SNP (rs116799036) between the HLA-B51 
and the MICA was strongly associated with BD, and that 
influenced HLA-B*51 [63]. However, this observation was 
not replicated in a large case-control cohort (1,190/1,257), 
which instead verified HLA-B51 as a primary BA allele 
[64]. Recently, a study of Iranian BD reported that the HLA-
B51 allele and the rs76546355/rs116799036 MHC SNP are 
independent genetic risk factors for BD [65]. 
 While the association of single polymorphisms of the 
MICA with BD appeared inconsistent in different reports, 
increased haplotype alleles of the MICA*009 and/or *019 
were associated with BD in two independent studies 
including case-control European Caucasian (56/90) and 
Spanish (42/165) cohorts [66, 67]. 
 There are limited studies of pathological importance of 
MICA in BD. In a study with 27 patients and 21 controls, 
soluble MICA in serum and NKG2D expression on CD8+ 
T cells were not significantly increased in BD [68]. In 
another study, HLA-B51-restricted cytotoxic T lymphocytes 
autoreactive to MICA transmembrane peptides were detected 
in active DB patients [69]. 

MICA IN RHEUMATIC DISEASE ASSOCIATED 
INFLAMMATORY BOWEL DISEASE (IBD) INCLU-
DING ULCERATIVE COLITIS (UC) AND CROHN'S 
DISEASE (CD) 

Although IBD is not categorized as rheumatic disease, strong 
association between IBD and spondyloarthropathy (SpA) is 
well documented [70-73]. About 10% SpA patients develop 
IBD in the follow-up studies [74-76], and 20-30% patients 
with IBD have rheumatic abnormality [77, 78]. Moreover, 
studies indicated that 20%-40% of patients with IBD fulfill 
the criteria for SpA [79, 80]. 
 MICA has been extensively studied in IBD. MICA-A5.1 
was identified as a protective allele to CD and extensive 
form of UC in two independent case-control studies 
including Tunisian (36 cases/123 controls) and Spanish 
(121/116) cohorts, respectively [81, 82]. On the other hand, 
MICA-A5 was correlated with worse progression of UC  
 

[82], and was associated with late age of onset of CD [81]. 
MICA-A6 also was associated with UC in Tunish and 
Japanese (case/control: 36/12 and 83/132, respectively) 
studies [81, 83]. A higher frequency of MICA-129met/met 
was reported in IBD patients of Murcians (case/control: 
88/154) [84]. A haplotype study showed that allele 
MICA*007 was associated with UC of North European 
Caucasian (141 cases vs 118 controls) [85]. However, these 
associations were not in agreement with several other 
reports. Two Chinese studies presented contradictory results 
by showing an increase of MICA-A5.1 in UC patients [86, 
87]. The frequencies of MICA-129-val was significantly 
higher in UC patients of a Chinese cohort (case/control: 
272/560) [88]. A later report of Japanese case-control 
(64/236) cohort of UC patients indicated that MICA-A6 
association attributed to LD with HLA-B52 [89]. Two study 
of Caucasoid origin with CD (n=94 and 248), UC (n=94 and 
329) and controls (n=154 and 354) could not find any 
associations of particular alleles of the MICA gene [90, 91]. 
Taking together, like other genetic association studies, in 
addition to sample size as an important factor, the incidence 
of MICA variants in patients with IBD may vary between 
different racial and ethnic populations. 
 The intestinal epithelial cell (IEC) is a major MICA 
expression cell type. Increased MICA expression was found 
on IECs in CD. Correspondingly, an increased subset of 
CD4(+) T cells expressing NKG2D was also found in the 
lamina propria from patients with CD, along with an 
increased Th1 cytokine profile and perforin in the periphery 
and in the mucosa in CD [92, 93]. These findings highlight 
the role of MICA-NKG2D in the activation of a unique 
subset of CD4(+) T cells with inflammatory and cytotoxic 
properties in CD [92]. 

SUMMARY AND PERSPECTIVE 

 Multiple polymorphisms of the MICA gene have been 
extensively examined in rheumatic diseases. Although some 
results are inconsistent, which are mainly conflicted in 
primary susceptibility verses secondary effect from the HLA 
class I or II genes. There seems to be an agreement that 
significantly increased frequencies of specific MICA alleles 
occur in various rheumatic diseases. The discrepancies of the 
genetic association of the MICA gene with the diseases may 
be largely caused by sample size and heterogeneity of study 
populations (Table 1). It is particularly concerned that the 
numbers of study subjects in most of the reports were 
relatively small with low statistical power. 
 In addition, genotyping methods and disease subtypes 
may also be important factors. Therefore, much research 
remains to be done on the genetics of MICA in rheumatic 
diseases. 
 MICA has been attributed to play important roles in 
immune surveillance. However, the evidence of functional 
MICA variants contributing to pathogenesis of many 
rheumatic diseases is still unconvincing. MICA 
polymorphism and/or haplotype alleles encode unique 
protein structures, and/or exhibit specific functions. For 
instance, MICA-A5.1 contains an insertion of guanine at 
codon 295 that results in a premature stop codon at position  
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Table 1. Summary of associations between inflammatory rheumatic diseases and MICA. 
 

Disease MICA Variant Population or Ethnicity Case/Control or Family Association  
(Risk or Protective) References 

RA MICA-‐A6 Spanish 54 families and 211 cases yes (protective) [28] 

RA MICA-‐A6 Caucasian 90/85 yes (protective) [29] 

RA MICA-‐A6 French Caucasian (FC)  
and German Caucasian (GC)  100 families (FC) and 90/182 (GC) none [30] 

RA MICA-‐129 French Caucasian (FC)  
and German Caucasian (GC)  100 families (FC) and 90/182 (GC) yes (unknown) [30] 

AS MICA-‐A4 Caucasian 48/50 yes (risk) [32] 

AS MICA-‐A4 Caucasian 162/103 none due to LD with HLA-‐B27 [33] 

AS MICA-‐A4 Sardinia 82/139 yes (risk) [34] 

AS MICA-‐129 met/met  Algerian 129/760 yes (risk) [35] 

AS MICA*007:01 US Caucasian  1070/1003  yes (risk) [36] 

AS MICA*007:01 Chinese Han   473/536  yes (risk) [36] 

AS MICA*019 Chinese Han  473/536  yes (risk) [36] 

PsA MICA-‐A9 Spanish 65/177 yes (risk) [37] 

PsA MICA-‐A9 Spanish 110/110 yes (risk) [38] 

PsA MICA-‐A9 Jewish 52/73 yes (risk) [39] 

PsA MICA-‐A9 Chinese 102/210 none  [40, 41] 

PsA MICA-‐A9 mixed populations with meta-‐analysis 2002 /1933  yes (risk)  [42] 

PsA MICA-‐129-‐met/met Canadian Caucasian 745/547 yes (risk) [44] 

psoriasis MICA-‐A9 mixed populations with meta-‐analysis 2003 /1933  yes (risk)  [42] 

psoriasis MICA-‐A9 Chinese 105/160 none [40] 

psoriasis MICA-‐A9 European 9247/13589  none [46] 

SLE MICA-‐A5  Italian 48/158 yes (risk) [47] 

SLE MICA-‐A5.1  Italian 48/158 yes (risk) [47] 

SLE MICA-‐A9  Italian 48/158 yes (protective) [47] 

SLE MICA-‐A5.1  Czech 123/96 yes (risk) [48] 

SLE MICA129Met;A9  Japanese 716/351 yes (risk) [50] 

SLE any of MICA variants Spanish 333/361 none [51] 

BD MICA-‐A6 Japanese 77/103 yes (risk) [54] 

BD MICA-‐A6 Greek  38/40 yes (risk) [55] 

BD MICA-‐A6 Korean 108/204 yes (risk) [56] 

jBD MICA-‐A6 Italian 18/20 yes (risk) [57] 

BD MICA-‐A6 Iranian 84/87 none due to LD with HLA-‐B51 [58] 

BD MICA-‐A6 Spanish 58/194 none due to LD with HLA-‐B51 [61] 

BD MICA-‐A6 Italian 69/130 none due to LD with HLA-‐B51 [62] 

BD MICA*009 European Caucasian  56/90 yes (risk) [66] 

BD MICA*019 Spanish 42/165 yes (risk) [67] 

CD  MICA-‐A5.1  Tunisian 36/123  yes (protective) [81] 

CD MICA-‐A5  Tunisian 36/123  late age of onset [81] 

CD any of MICA variants Caucasian 94/154 none [90, 91] 
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304, which in turn encodes a truncated MICA protein 
lacking part of the transmembrane domain and the whole 
cytoplasmic tail [2]; The proteins encoded by MICA-129-
met possess stronger binding affinity to NKG2D than 
MICA-129-val [3]; Among MICA*008, *007 and *019, 
MICA*008 expresses less on the surface of human 
fibroblasts, but can be excreted in exosomes that down-
regulate NKG2D activity [27, 94], MICA*019 highly 
expressed on the surface of the fibroblasts whereas 
expression of MICA*007 was the lowest in the soluble form, 
which may suggest a predominant up-regulation on NKG2D 
by both alleles. From its functional point of view, no matter 
contributing to primary or secondary disease susceptibility, 
changes of frequencies of MICA variants may impact 
cellular functions and subsequent immune responses or 
inflammatory process in the diseases. Therefore, a possible 
change of NKG2D signaling caused by high affinity of 
MICA to NKG2D may present in AS, PsA, SLE and IBD 
that were reported in association with MICA-129met [35, 36, 
44, 50, 84], and a potentially predominant up-regulation of 
NKG2D may occur in AS, BD and UC that were associated 
with MICA*007 and/or *019 [36, 67, 85]. 
 In fact, altered expression of MICA and activity of 
NKG2G, and/or its downstream signals have been reported 
in RA, SLE, BD and IBD [31, 52, 53, 69, 92, 93]. Further 
research may be focused on how MICA variants are 
associated with MICA/NKG2D signaling that contributes to 
pathogenesis in rheumatic diseases. 
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