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Abstract: There is no treatment for the fibrosis observed in scleroderma (systemic sclerosis, SSc). Although genome-

wide expression profiling has suggested that differences in gene expression patters between non-lesional and lesional skin 

are minimal, phenotypically these areas of tissue are quite different. In fact, lesional areas of scleroderma patients can be 

distinguished by the presence of a differentiated form of fibroblast, termed the myofibroblast. This cell type expresses the 

highly contractile protein smooth muscle actin ( SMA). Fibroblasts isolated from SSc lesions excessively synthesize, 

adhere to and contract extracellular matrix (ECM) and display activated adhesive signaling pathways. Strategies aimed at 

blocking myofibroblast differentiation, persistence and activity are therefore likely to be useful in alleviating the fibrosis 

in scleroderma. 
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INTRODUCTION 

 Fibrosis has been hypothesized to arise due to a 
hyperactive tissue repair program. In healthy, uninjured 
connective tissue, fibroblasts are ‘stress-shielded’ by the 
surrounding extracellular matrix (ECM) [1, 2]. Upon tissue 
damage, fibroblasts, no longer stress-shielded by the ECM, 
develop progressively stronger attachments to the ECM. 
These attachments are visualized on cell surfaces in 
structures called focal adhesions (FAs), which contain 
clusters of specialized ECM receptors called integrins [1,2]. 
Subsequently, fibroblasts migrate into the wound and, due to 
stress and growth factors released by immune and blood 
cells, differentiate into myofibroblasts. Myofibroblasts, 
characterized by the expression of the highly contractile 
protein smooth muscle actin ( SMA) which is organized 
into stress fibers connected to the ECM [2], produce and 
remodel new ECM. Although myofibroblasts disappear from 
newly formed connective tissue during normal repair, 
myofibroblasts persist in fibrotic connective tissue, and are 
considered to be the final effecter cell in all fibrotic 
conditions including scleroderma [systemic sclerosis, SSc, 
3]. Indeed, although genome-wide expression profiling has 
failed to identify differences in mRNA expression between 
clinically affected and unaffected (i.e. fibrotic and non-
fibrotic) areas of SSc skin [4], histological and phenotypic 
explorations have revealed that clinically affected, but not 
clinically unaffected, areas of SSc patients are abundantly 
populated by myofibroblasts [3,5]. Moreover, fibroblasts 
isolated from clinically affected, but not unaffected, areas of 
SSc patients are characterized by elevated adhesion to and 
contraction of ECM. For all these parameters, fibroblasts  
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taken from healthy skin behave similarly to fibroblasts taken 
from non-lesional areas of SSc patients. 

 The underlying mechanistic difference among clinically 
affected and unaffected skin (and healthy tissue) is unclear. 
The myofibroblasts could, in principle, emerge due to 
differentiation of resident fibroblasts in response to 
cytokines or due to recruitment of SMA expressing cells 
from elsewhere, notably the vasculature (either pericytes or 
circulating bone marrow cells, also termed fibrocytes) [6,7]. 
These concepts have been reviewed elsewhere [6, 7]. In this 
review, I wish to focus on what is known about SSc 
fibroblasts and how these observations might fit into a 
conceptual framework of how the myofibroblast might 
originate in fibrosis. 

TRANSFORMING GROWTH FACTOR-  (TGF- ) 

ALK5/Smad3 

 That TGF , which consists of three isoforms (TGF 1, -
2 and -3), is essential for experimentally-induced fibrosis is 
well-established [8, 9]. TGF-  target genes include ECM 
components such as collagen and fibronectin and also key 
markers and effectors of myofibroblast differentiation 
including SMA and the matricellular protein connective 
tissue growth factor (CTGF, CCN2). The basic canonical 
TGF  signaling pathway involves that ability of active 
TGF  ligand to signal through a heteromeric receptor 
complex consisting of a TGF  type I and a TGF  type II 
receptor. Fibroblasts or epithelial expression of the TGF  
type II receptor has recently shown to be necessary for the 
development of experimental lung fibrosis [10, 11]. In the 
context of fibroblasts, the TGF  type I receptor is termed 
activin linked kinase 5 (ALK5) which phosphorylates Smad2 
and 3. Phosphorylated Smad2 and 3 bind to Smad4, and the 
resultant complex translocates into the nucleus to activate 
transcription by binding to the sequence CAGA. Smads are 
relatively weak transcriptional activators, but recruit to the 
promoter transcriptional cofactors such as p300 [12]. 



164   The Open Rheumatology Journal, 2012, Volume 6 Andrew Leask 

 TGF  has multiple functions such as suppressing the 
immune system and epithelial proliferation; thus, targeting 
TGF  is likely to result in substantial clinical side effects [8, 
9]. A clinical trial evaluating an anti-TGF 1 antibody was 
recently conducted for SSc. Results obtained during this trial 
illustrated that the antibody was ineffective and caused 
serious adverse effects which may or may not be linked to 
the use of the antibody [13]. Moreover, targeting ALK5 
using small molecule inhibitors reverses some aspects of 
lesional dermal scleroderma fibroblasts, but critically does 
not reduce -SMA or CCN2 protein overexpression or 

SMA stress fiber formation characteristic of this cell type 
[3, 14]. In addition, CCN2 overexpression in SSc fibroblasts 
does not involve Smad3 [15]. Finally, SSc fibroblasts 
overexpress endoglin which suppresses canonical TGF  
signaling [16]. Thus canonical TGF  signaling contributes to 
some, but not all, of the phenotype of lesional SSc 
fibroblasts [3, 14]. That said, however, SSc fibroblasts are in 
an environment of elevated TGF  (coming from immune 
cells) and exogenous TGF  can further activate gene 
expression in SSc fibroblasts thus, in vivo, canonical TGF  
signaling is likely to be important of the overall fibrotic 
phenotype in SSc [17-20]. 

 Given these above concerns, it is likely that it is 
worthwhile to examine efforts expended the precise 
mechanism through which TGF  causes its fibrogenic 
effects. Indeed, substantial evidence now links non-canonical 
TGF  signaling pathways to the fibrosis in SSc. 

ALK1/Endoglin/Smad 1 

 Recent data suggest that TGF  is able to activate Smad1 
through ALK1/endoglin (intriguingly a pathway normally 
considered to operate principally within the vascular system) 
and that this pathway contributes to the overexpression of 
profibrotic genes in SSc by elevating ERK [21]. Endoglin, 
however, appears to be refractory toward canonical 
TGF  signaling via Smad3 [16]. Increased levels of 
endoglin correlated with high levels of pSmad1, collagen, 
and connective tissue growth factor (CCN2); depletion of 
endoglin resulted in reduced expression of these markers 
[22]. Moreover, this non-canonical ALK1/endoglin pathway 
may contribute to the overexpression of endothelin-1 (ET-1) 
by SSc fibroblasts [22]. These results are particularly 
intriguing as, as described above, myofibroblasts in fibrosis 
(including in scleroderma) have been postulated to originate 
from microvascular pericytes; these sets of observations are 
supportive of this interesting possibility [6, 23, 24] (please 
see below). Thus targeting the non-canonical TGF  
ALK1/endoglin/Smad1 pathway may prove in the future to 
be a viable anti-fibrotic approach in SSc. 

Syndecan 4/ERK/ets-1 

 As discussed above, even though gene expression 
profiling has identified no clear differences between non 
lesional and lesional skin, clear phenotypic differences exist 
between these tissues, in that lesional fibroblasts are 
myofibroblasts, and, when isolated and cultured, possess 

SMA stress fibers and are highly adhesive and contractile 
[3]. The proteoglycan syndecan 4, a fibronectin coreceptor, 
appears to be overexpressed selectively in lesional SSc 
fibroblasts compared to non-lesional SSc fibroblasts and  
 

appears to be essential for nucleation of SMA stress fibers 
and hence for ECM contraction [3, 25]. Thus expression of 
syndecan 4 may be important for the appearance of the 
myofibroblast phenotype in lesional SSc skin. Syndecan 4 
also appears to be important for both TGF  and mechanical 
loading to induce ERK activation [3, 26, 27]. Downstream of 
TGF  and ERK, transcription factor ets-1 controls the 
induction of the CCN2 promoter [28, 29]. The transcription 
factors fli-1 and ets-1 occupy the same sites on promoters; 
TGF  stimulation results in replacement of fli-1 on the 
CCN2 promoter with ets-1 [30]. Indeed, ets-1 seems to 
generally regulate the expression of profibrotic genes in 
fibroblasts [31-33]. Thus, targeting the syndecan4/ERK/ets-1 
pathway may be a good target for anti-fibrotic therapy in SSc 
[33]. 

Egr-1 

 Recent studies also implicate the immediate-early 
response transcription factor early growth response (egr)-1 
in the pathogenesis of fibrosis, and, in particular, 
downstream of TGF  [34]. TGF  upregulates egr-1 also by 
an ERK-dependent Smad-independent mechanism and this 
contributes to the induction of type I collagen in fibroblasts 
[35, 36]. Egr-1 knockout mice are resistant to bleomycin-
induced skin scleroderma [37]. Intriguingly, genome-wide 
microarray analysis has revealed that only a minority of 
TGF -responsive genes in fibroblasts are also egr-1 
responsive; the “egr-1-regulated gene signature” was most 
prominent in skin biopsies clustering within the “diffuse-
proliferation” intrinsic subsets of SSc biopsies, but some of 
the genes were also associated with the “inflammatory” 
subset [38]. These observations suggest that targeting egr-1 
expression or activity might be a novel therapeutic strategy 
to control fibrosis in SSc. 

PPAR  

 An interesting crosstalk exists between TGF  and the 
transcription factor peroxisome proliferator-activated 
receptor (PPAR) , which suppresses TGF   signaling [39].   
Recent in vivo evidence has directly linked PPAR  with 
fibrosis. For example, wild-type mice treated with the 
PPAR  ligand rosiglitazone are resistant to bleomycin-
induced skin fibrosis while fibroblast-specific conditional 
knockout mice deficient in PPAR  show enhanced 
susceptibility to bleomycin-induced skin fibrosis [40, 41]. 
Providing a link with SSc, SSc skin fibroblasts inherently 
display reduced PPAR  expression, and rosiglitazone 
reverses the overexpression of fibrogenic markers by SSc 
skin fibroblasts [42]. Although PPAR  agonists or reduction 
of PPAR  expression have no effect on protein expression of 
cellular Smad3 or Smad7, Smad-dependent activity is 
modified through impacting transcriptional coactivator p300 
[41, 43]. (It should be pointed out that the PPAR  agonist 
rosiglitazone is known to have toxic side effects, for 
example, increasing the risk of myocardial infarction; 
nonetheless pioglitazone (an agent in the same 
thiazolidinedione drug class) has not been reported to have 
this effect [44]. Moreover, it is possible that novel PPAR  
agonists not in the thiazolidinedione drug class may be 
generated in the future.) Whether PPAR  agonists may be 
useful in the future to treat SSc awaits further study. 
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CELL ADHESION 

Cell Adhesion/Contraction-Mediated Activation of 

Latent TGF  

 Compared to their non-lesional and healthy counterparts, 
lesional SSc fibroblasts are characterized by enhanced 
abilities to adhere to and contract extracellular matrix (ECM) 
[4]. Adhesion to ECM itself is sufficient to elicit a fibrogenic 
mRNA expression profile in fibroblasts [45]. In addition, 
adhesive signaling is elevated in SSc fibroblasts [46-48]. 
Lesional SSc fibroblasts show an enhanced ability to adhere 
to ECM in a fashion that is blocked by anti-integrin 1 
antibodies [49]. Mice harboring a deletion for integrin 1 in 
fibroblasts are resistant to bleomycin-induced skin fibrosis 
and exhibit delayed tissue repair [50, 51]. These issues arise 
due to the inability of integrin 1 deficient fibroblasts to 
adhere to and contract ECM [51]. They could also arise due 
to the fact that integrin 1-deficient mice are defective in 
activation of latent TGF  [51]. 

 Integrins activate latent TGF- 1 through two different 
mechanisms [52]. First, integrins appear to serve as a 
docking point for both latent TGF- 1 and activating 
proteases, bringing both into close vicinity enhancing 
liberation of active TGF . Second, integrins appear to 
engage cell traction forces that are directly transmitted to the 
latent TGF  complex resulting in TGF  release or 
presentation to its receptors. In normal dermal fibroblasts, 
expression of integrins v 5 and v 3 is low but is up-
regulated in SSc, correlating with transition of fibroblasts 
into myofibroblasts [53, 54]. Available data indicate that 
integrins containing the v subunit bind to and activate latent 
TGF- 1 through an RGD sequence in the latency associated 
peptide [55, 56]. In normal fibroblasts, growth factor-
induced myofibroblast contraction increases latent TGF- 1 
activation in through integrins, in a fashion that is dependent 
on actin-dependent contraction [51, 57]. 

Cell Adhesion-Mediated Signaling 

 In addition to its effect on activating latent TGF , cell 
adhesion to ECM also promotes downstream signaling in 
response to TGF  involves the clustering of other proteins in 
addition to integrins to FAs, including paxillin (which 
provides

 
a platform for FAK), protein kinase C as well as 

members of the Rho family of GTPases [58, 59]. FAK/src is 
required for the ability of TGF  to induce JNK and TAK1 
and hence myofibroblast formation and activity [60, 61]. SSc 
lung fibroblasts display constitutive ALK5-independent JNK 
activation, which contributes to the persistence of the 
myofibroblast phenotype of this cell type [17]. Thus 
targeting TAK1/JNK may be useful in SSc. 

 Mice harboring a fibroblast-specific deletion for rac1, a 
member of the Rho GTPase family, are resistant to 
bleomycin-induced skin fibrosis [62]. Rac1-deficient 
fibroblasts are responsive to TGF , however they show 
reduced generation of reactive oxygen species [63]. 
Restoration with hydrogen peroxide alleviates the Rac1-
deficient phenotype both in vivo and in vitro [64]. Rac is 
constitutively activated in lesional SSc fibroblasts and 
pharmacological inhibition of Rac1 reverses the fibrotic 
phenotype these cells [64]. In this latter system, Rac1 acts by 
a PI3 kinase/Akt-dependent mechanism; rac inhibition 

reduced the enhanced Akt phosphorylation observed in SSc 
fibroblasts [64]. Similarly, TGF -induced lung 
myofibroblast differentiation involves the PI3kinase/Akt 
cascade [65]. Akt phosphorylation is elevated in SSc 
fibroblasts [40]; expression of the phosphatase PTEN (which 
dephosphorylates PI3 kinase and hence suppresses Akt 
phosphorylation) is decreased in SSc fibroblasts [66]. Loss 
of PTEN is sufficient to result in skin fibrosis in vivo; 
restoration of PTEN in SSc fibroblasts rescues the 
profibrotic phenotype of these cells [66]. 

 Of the PKC family members, only protein kinase C  
(PKC ) contains an actin-binding motif [67]. PKC  
knockout mice and fibroblasts show defective tissue repair 
and myofibroblast differentiation both basally and in 
response to TGF  [68]. PKC -deficient fibroblasts show 
reduced rac activation and the baseline defects observed in 
the cells can be rescued by rac1 overexpression, indicating 
that PKC  acts upstream of rac1 [68]. It appears that Akt 
regulates ROS generation by modulating expression of the 
NADPH oxidase Nox4 and p22(phox) catalytic subunits, 
which are both required for NADPH oxidase activity [69]. 
These data suggest that targeting a PKC /rac/Akt/PI3 
kinase/ROS cascade may useful in SSc. 

ADDITIONAL CYTOKINES/MATRICELLULAR 
PROTEINS 

Endothelin 

 Endothelin has three forms, ET-1, ET-2, and ET-3 [70] 
that signal through the ETA and ETB 7-transmembrane G-
protein-coupled receptors [70]. Similar to TGF , ET-1 can 
induce ECM production in fibroblasts, through MEK/ERK 
and the ETA and ETB receptors, whereas ET-1 induces 
myofibroblast formation, migration and ECM contraction 
through ETA and Akt/rac [17, 71]. TGF  induces ET-1 
through JNK, and ET-1 is a downstream mediator of TGF ’s 
fibrogenic responses [17, 72]. ET overproduction in SSc 
lung fibroblasts is TAK1/JNK-dependent but ALK5-
independent, and contributes to the persistent myofibroblast 
phenotype of SSc lung fibroblasts [17]. TGF  works 
together with ET-1 to promote myofibroblast differentiation 
[73]. Moreover, gingival fibroblasts (gingivae do not scar) 
show a less potent response than dermal fibroblasts to a 6 
hour treatment with TGF  (in terms of CCN2, type I 
collagen and SMA mRNA expression) [74]. Gingival 
fibroblasts do not express ET-1; adding back ET-1 rescues 
this phenomenon [74]. As discussed above, in vivo, SSc 
fibroblasts are in an environment of excess TGF , so that 
SSc fibroblasts overexpress ET-1 constitutively and that 
TGF  and ET-1 synergize in terms of their fibrogenic 
activity is likely to be of clinical relevance. That SSc 
fibroblasts are inherently different from normal fibroblasts is 
emphasized by the fact that they maintain their fibrotic 
characteristics in culture, show activated adhesive and 
contractile properties, and overexpress key fibrotic markers 
independently of canonical TGF  signaling. Based on all 
these observations, it is plausible that SSc fibroblasts, due to 
ET-1 overexpression, are inherently primed to respond 
excessively to pro-fibrotic signaling emanating from 
cytokines produced in response to tissue injury or 
inflammation. Clinical experiments have suggested that ET 
receptor antagonists may be useful at reversing skin fibrosis 
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in SSc and IL-2, IL-6, IL-8 and IFN-  levels in SSc patients 
but the results have been less positive when SSc-related 
interstitial lung disease has been examined [75-77]. 

Platelet-Derived Growth Factor (PDGF) 

 PDGF, a family of homo- or hetero-dimeric growth 
factors including PDGF-AA, PDGF-AB, PDGF-BB, PDGF-
CC, and PDGF-DD, binds two different PDGF receptors,  
and  [78, 79] PDGF stimulates migration and proliferation 
of neutrophils, macrophages, fibroblasts and smooth muscle 
cells as well as granulation tissue formation [78, 79]. PGDF, 
like TGF  and ET-1, stimulates fibroblasts to contract 
floating collagen gel matrices, express collagen and migrate 
[80, 81], and, in vivo, for the expression of SMA (in the 
liver) and pericytes to differentiate into myofibroblasts (in 
the kidney) [82, 83]. 

 Evidence is accumulating that SSc myofibroblasts may 
arise through the recruitment of microvascular pericytes. 
PDGF  receptors are expressed by activated microvascular 
pericytes in patients with early SSc, but not in those with 
late-stage scleroderma [84]. Although histological 
examination of markers is inherently imprecise method of 
detecting origin, only a subset (~30%) of myofibroblasts in 
cutaneous mouse wounds are positive for the pericyte marker 
NG2, but the overwhelming majority of cells in SSc and in 
bleomycin-induced skin fibrosis are NG2-positive [24, 85]. 
Imatinib mesylate, which inhibits the platelet-derived growth 
factor receptor (PDGFR)-beta inhibitor and c-abl, delays 
wound closure, concomitant with reduced expression of 
collagen type I and numbers of myofibroblasts [86]. 
However, in vitro, imatinib mesylate did not prevent serum-
induced contraction of collagen gels but potently inhibited 
fibroblast proliferation [86]. In a mouse model of bleomycin-
induced dermal fibrosis, dual inhibition of c-abl and PDGF 
receptor signaling bdasatinib and nilotinib potently reduced 
the dermal thickness, the number of myofibroblasts, and the 
collagen content of the skin in a dose-dependent manner at 
well-tolerated doses [87]. Moreover, it has been shown that 
TGF -induces fibrosis in vivo via c-abl [88, 89], in a fashion 
 that appears to involve protein kinase c delta [90].  
Collectively, these data suggest that imatinib mesylate may  
act, at least in part, by blocking pericyte recruitment to SSc 
skin. In an open label trial, adverse events were common, but 
improvements in skin thickening were seen [91]. However, 
in another trial, imatinib was poorly tolerated which could 
limit its application in SSc [92]. Thus it remains debatable as 
to whether imatinib mesylate might be a viable option for the 
treatment of SSc, clinically. 

CCN2 

 CCN2, an excellent surrogate marker for the severity of 
fibrosis in SSc [93-96], was initially considered to be a 
classical growth factor but now has been recognized to be a 
matricellular protein (of the CCN family) that acts through a 
variety of integrins and HSPGs or trkA to promote cell 
adhesion and adhesive signaling in response to extracellular 
ligands [97-99]. CCN2 is induced by both TGF  and ET-1 
[15, 100, 101], and thus may impact the adhesive signaling 
ability of these cytokines. Indeed, CCN2 promotes the 
adhesive signaling of TGF  in fibroblasts [102]. CCN2, 
independent of canonical TGF  pathways, is overexpressed 

in SSc fibroblasts through an ET-1/ the noncanonical Smad1 
pathway/Sp1-dependent mechanism [14, 21, 103]. 

 Blocking CCN2 with neutralizing anti-CCN2 antibody or 
siRNA reduces aspects of bleomycin-induced lung fibrosis 
including collagen and SMA expression [104]. Moreover, 
fibroblast-specific CCN2 knockout mice are resistant to 
bleomycin-induced skin fibrosis [105]. CCN2 is not 
considered to cause fibrosis directly, unless massively 
overexpressed [106], but rather appears to create an 
environment favorable for fibrogenic stimuli to act [107]. 
Rather than being a downstream mediator of TGF  activity, 
CCN2 appears to acts as a cofactor with TGF  to induce 
fibrogenic activities both in vitro and in vivo [97, 102, 108]. 
In cells expressing CCN2 constitutively, CCN2 appears to be 
required for TGF  to maximally induce type I collagen and 

SMA [102]. On the other hand, in cells CCN2 not making 
constitutively, CCN2 is not needed for this process [105, 
109]. CCN2 may perform its actions by increasing the 
bioavailabilty of TGF  to its receptors at extremely low 
concentrations of TGF  [110], or by activating the non-
canonical Smad1 pathway [111]. One of the great 
conundrums that have been revealed by gene expression 
profiling and by functional analysis of SSc skin and 
fibroblasts is that SSc fibroblasts taken from clinically 
unaffected skin already overexpress profibrotic markers such 
as CCN2 yet, unlike fibroblasts in clinically affected 
(lesional) skin are not highly contractile myofibroblasts 
[3,4]. Collectively, these observations suggest that the 
expression of CCN2 in non-lesional skin fibroblasts may 
indicate that these cells are inherently primed to excessively 
respond to profibrotic stimuli (such as TGF ) hence 
resulting in clinically defined scar tissue. 

FUTURE PROSPECTS AND CONCLUSIONS 

 Although clinical studies targeting individual cytokines 
in SSc have been inconclusive, a combinatorial approach 
may be warranted. Studies examining the signaling 
mechanisms underlying the action of these cytokines on 
fibroblasts have revealed that common pathways seem to be 
used utilized. Blocking these downstream pathways (e.g. c-
Abl, TAK, FAK, PPAR , integrins, Rac/Akt/PKC ) which 
appear to integrate signaling from growth factors and appear 
to be essential for the SSc myofibroblast phenotype might 
prove to be more fruitful. CCN2 may be a good antifibrotic 
target as it appears to be downstream of all fibrogenic 
pathways. 
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