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Abstract: Bioactive sphingolipids, such as sphingosine 1-phosphate (S1P), dihydrosphingosine 1-phosphate (dhS1P) and 

ceramide, regulate a diverse array of cellular processes. Many of these processes are important components of wound-

healing responses to tissue injury, including cellular apoptosis, vascular leak, fibroblast migration, and TGF-  signaling. 

Since over-exuberant or aberrant wound-healing responses to repetitive injury have been implicated in the pathogenesis of 

tissue fibrosis, these signaling sphingolipids have the potential to influence the development and progression of fibrotic 

diseases. Here we review accumulating in vitro and in vivo data indicating that these lipid mediators can in fact influence 

fibrogenesis in numerous organ systems, including the lungs, skin, liver, heart, and eye. Targeting these lipids, their 

receptors, or the enzymes involved in their metabolism consequently now appears to hold great promise for the 

development of novel therapies for fibrotic diseases. 
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INTRODUCTION 

 The response to tissue injury involves a complex series of 
biological responses which, if appropriate in timing, 
magnitude and balance, restore normal tissue structure and 
function. When dysregulated or over-exuberant, however, 
these responses can result in fibrosis, characterized by the 
pathological accumulation of fibroblasts and myofibroblasts, 
and the extracellular matrix that they synthesize. Fibrosis is 
frequently observed following injury to the lungs, skin, liver, 
heart, and eye. In many fibrotic diseases, such as idiopathic 
pulmonary fibrosis (IPF) and systemic sclerosis (SSc), the 
replacement of normal tissue with fibrosis is progressive and 
unrelenting, eventually leading to end-stage organ 
dysfunction and death [1,2]. Since tissue fibrosis may be 
difficult to reverse once established, strategies aimed at 
preventing fibrosis by interrupting the upstream biological 
processes that contribute to fibrogenesis are likely to have 
the greatest therapeutic impact. 

 Sphingolipids were originally identified as structural 
components of biological membranes. Many of them, most 
notably sphingosine 1-phosphate (S1P) and ceramide, are 
also now recognized to be important mediators of many 
basic cellular processes involved in tissue responses to 
injury, such as cell migration, survival, contraction, 
proliferation, gene expression, and cell-cell interactions [3-
5]. By virtue of their ability to regulate these processes, there 
has been substantial recent interest in the ability of 
sphingolipids, particularly S1P, to regulate tissue fibrosis in 
various organ systems. S1P exerts its cellular effects 
predominantly through interactions with a family of specific 
cell surface G protein-coupled receptors, labeled S1P1-5 [3,6].  
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Especially relevant to wound healing and fibrotic responses 
to tissue injury, S1P signaling through its receptors has been 
shown to regulate epithelial cell apoptosis, fibroblast 
migration and myofibroblast differentiation, vascular 
permeability, and TGF-  signaling in vitro [7-12]. 
Furthermore, numerous recent studies have suggested 
important roles for S1P in the development of fibrosis in the 
lungs, skin, liver, heart and eye, and alterations in circulating 
S1P levels have been observed in various human diseases 
characterized by tissue fibrosis [13-19]. In this review we 
discuss the current literature implicating sphingolipid 
signaling in the regulation of fibrogenesis in multiple organs 
(Table 1). We focus predominantly on S1P, but discuss 
evidence that ceramide and dihydrosphingosine 1-phosphate 
(dhS1P) regulate fibrogenesis as well. 

SPHINGOLIPID METABOLISM 

 Sphingolipids are a class of complex, structurally-related 
compounds derived from sphingoid bases, with hundreds of 
known class members. The first sphingoid base 
characterized, and the most common in mammalian 
organisms, is sphingosine [20,21]. The enzymatically 
catalyzed pathways through which sphingosine and many of 
the most commonly studied signaling sphingolipids, 
including S1P, dhSIP, and ceramide, are converted into each 
other are depicted in Fig. (1). Given the pleiotropic effects of 
these sphingolipids on physiological and pathological 
cellular functions, altering their levels by targeting the 
enzymes involved in their metabolism holds great 
therapeutic potential for human diseases. 

 Ceramide is at the center of these metabolic pathways 
(Fig. 1). It can be generated de novo from serine and 
palmitoyl-CoA through several intermediate steps, the last of 
which is the desaturation of dihydroceramide. Ceramide 
alternatively can be formed from the catabolism of 
sphingomyelin by sphingomyelinases (SMase) or the 
breakdown of complex glycosphingolipids. Conversely, 
ceramide can be converted back to sphingomyelin by the 
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addition of a phosphocholine group by sphingomyelin 
synthases. Ceramide can be phosphorylated to ceramide 1-
phosphate by ceramide kinase, or it can be glycosylated by 
glucosyl- or galactosylceramide synthases. Ceramide can 
also be metabolized by ceramidases to form sphingosine, 
which can in turn be phosphorylated by sphingosine kinases 
(Sphk), producing S1P. S1P can either be converted back to 
sphingosine by the action of S1P phosphatases or lipid 
phosphate phosphatases (LPPs) [22], or it can be degraded 
by S1P lyase. Similar enzymatic pathways catalyze the 
interconversion of dihydroceramide, dihdydrosphingosine, 
and dihydrosphingosine 1-phosphate (dhS1P), as also shown 
in Fig. (1). 

SPHINGOLIPIDS AND LUNG FIBROSIS 

 Devastating fibrotic lung diseases such as IPF may result 
from over-exuberant wound-healing responses to common 
insults to the lung, such as from inhaled particulates, viral 
infections, or aspiration of refluxed gastric acid [23-25]. 
Biological responses to injury which, if dysregulated, may 
contribute to the development of these diseases include: 1) 
epithelial cell death/apoptosis, 2) increased vascular 
permeability, 3) inflammatory cell recruitment, 4) 
extravascular coagulation, 5) activation of transforming 
growth factor-  (TGF- ) and other pro-fibrotic mediators, 6) 
fibroblast recruitment, proliferation, persistence and 
activation to myofibroblasts, and 7) synthesis of collagen 
and other extracellular matrix proteins [26-29]. Better 
understanding of the molecular mediators and pathways that 
regulate these aberrant wound-healing responses should 
therefore lead to novel therapeutic targets for fibrotic 
diseases. In support of this approach, multiple investigations 
in animal models of lung fibrosis have demonstrated that 
targeting one or more of these wound-healing responses can 
prevent the development of fibrosis, and in some cases 
reverse established fibrosis [30-36]. 

 Recent data indicates that S1P, signaling through the 
S1P1 receptor, plays a key role in regulating the development 
of fibrosis after lung injury. We demonstrated that inhibition 
of S1P-S1P1 signaling resulted in increased pulmonary 
fibrosis in the bleomycin mouse model of this disease, 
indicating that this pathway functions in the lung as an 
endogenous inhibitor of fibrogenesis [13]. While there are 
numerous potential mechanisms to explain the anti-fibrotic 
effect of S1P-S1P1 signaling, we hypothesize that it is 
largely due to the ability of this pathway to attenuate 
vascular leak after lung injury. S1P has been established as a 
key regulator of vascular permeability, and it limits the 
vascular leak characteristic of the early, exudative response 
to lung injury. S1P’s ability to regulate vascular permeability 
in the lung appears to be attributable to signaling specifically 
through S1P1. Activation of S1P1 on endothelial cells by S1P 
or S1P1 agonists induces cytoskeletal rearrangements which 
promote formation of intercellular adherens and tight 
junctions, resulting in enhancement of endothelial barrier 
function [8,37-41]. Mice which are genetically deficient for 
the S1P-producing enzyme sphingosine kinase 1 (Sphk1) 
develop increased vascular leak after lung injury [42,43]. 
Genetic deletion of both sphingosine kinases (Sphk1 and 
Sphk2) results in a complete lack of circulating S1P and 
increased vascular leak in multiple organ systems, even in 
the absence of tissue injury [44]. Interrupting S1P-S1P1 
signaling with receptor antagonists, or with S1P analogs that 
act as functional antagonists of S1P1 with sustained 
administration, similarly increases vascular leak [13,45]. 
Conversely, short-term treatment with S1P or S1P1 receptor 
agonists has been shown to prevent vascular leak in 
numerous animal models of acute lung injury, as well as 
models of renal and cutaneous injury [39,41,45-51]. 

 Vascular leak is one of the hallmarks of tissue injury, and 
it contributes significantly to organ dysfunction [52,53]. In 
the lung, persistent vascular leak may also contribute to the 

Table 1. Organ Fibrosis in which S1P, dhS1P, Ceramide and/or their Synthetic Enzymes have been Implicated 

 

Affected 

Organ 

Sphingolipid/ 

Enzyme Implicated 

Receptor(s) 

Implicated 

Pro- or Anti-

Fibrotic Role 
Proposed Mechanism(s) References 

Lung fibrosis S1P 
 
 

Acid 
sphingomyelinase 

(ASM) 

S1P1 
 
 

? 

Anti-fibrotic 
 
 

Pro-fibrotic 

Attenuation of vascular leak and intra-alveolar coagulation 
 
 

Promotion of cellular apoptosis and fibroblast collagen 
synthesis 

[13] 
 
 

[76] 

Skin fibrosis/ 
Scleroderma 

S1P 
 

 
dhS1P 

S1P1,2 
 

 
S1P1,2 

Pro-fibrotic 
 

 
Anti-fibrotic 

Cross-activation of fibroblast TGF- / Smad signaling; 
myofibroblast differentiation 

 
Inhibition of fibroblast TGF- /Smad signaling through PTEN 

upregulation  

[78-81] 
 

 
[14, 81] 

Liver fibrosis S1P 
 
 

Ceramide/Acid 
sphingomyelinase 

(ASM) 

S1P2,3 

 
 

? 

Pro-fibrotic 
 
 

Pro-fibrotic 

Hepatic stellate cell accumulation and activation; homing of 
bone marrow-derived cells to the injured liver 
 

Promotion of hepatocyte apoptosis; hepatic stellate cell 
proliferation and activation 

[15, 84-88] 
 
 

 
[89-92] 

Cardiac 
fibrosis 

S1P S1P2,3 Pro-fibrotic Smad3 phosphorylation, myofibroblast differentiation and 
collagen production 

[16, 75] 

Retinal 
fibrosis 

S1P ? Pro-fibrotic Promotion of retinal pigmented epithelial cell proliferation, 
myofibroblast differentiation, and collagen synthesis 

[17, 93] 
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subsequent development of lung fibrosis. Increased lung 
capillary-alveolar permeability has been demonstrated to be 
present in the lungs of IPF patients and to predict worse 
outcomes [54,55]. One consequence of increased vascular 
permeability in the lungs is extravasation of clotting factors 
into the airspaces, where exposure to tissue factor in injured 
alveoli can initiate the coagulation cascade. There are 
extensive data indicating that activation of the coagulation 
cascade is a critical component of the fibrotic response to 
lung injury [30,32,33,56-63]. The resulting deposition of 
fibrin is thought to provide a provisional matrix through 
which fibroblasts migrate during tissue repair [52]. Fibrin in 
the airspaces may also promote epithelial-to-mesenchymal 
transition, further contributing to fibroblast accumulation 
[64]. If excessive or excessively persistent following injury, 
fibrin deposition consequently may contribute to the 
development of fibrosis [65]. Fibrin deposition is not 
absolutely required for the development of fibrosis [59,66], 
however, and extravascular activation of the coagulation 
cascade may contribute to fibrogenesis through other 
mechanisms. In addition to their role in the generation of 
fibrin, thrombin and other coagulation cascade proteinases 
also activate a family of cell-surface receptors, the 
proteinase-activated receptors (PARs). Activation of these 
receptors may promote fibrosis independently of fibrin 
generation, through the induction of mediators such as 
PDGF, CTGF and MCP-1/CCL2 or through the activation of 
latent TGF-  [33,63,67]. S1P-S1P1signaling may therefore 
attenuate the development of fibrosis after lung injury by 
limiting vascular leak and the accompanying extravasation 
of coagulation proteinases into the injured airspaces. 

 In vitro studies have shown that S1P is capable of 
mediating other processes which may contribute to the 
development of lung fibrosis, although some of these studies 
have produced conflicting data. For example, S1P has been 

shown to both potentiate and inhibit fibroblast chemotaxis 
[9,68-70]. S1P has also been shown to have cell-specific 
effects on apoptosis, either inducing apoptosis or promoting 
survival in different cell types [11,12,71,72]. S1P could 
therefore potentially contribute to the increased epithelial 
cell apoptosis and decreased fibroblast apoptosis observed in 
lung fibrosis [73]. Lastly, S1P has been shown to play a role 
in TGF- -induced differentiation of fibroblasts into 
myofibroblasts in vitro, another process critically involved in 
fibrogenesis [10,74,75]. 

 Further evidence that sphingolipids may regulate the 
development of lung fibrosis comes from recent findings that 
activity of the sphingomyelin-degrading enzyme acid 
sphingomyelinase (ASM) is increased in the lungs of mice 
after intratracheal bleomycin challenge, and that mice 
genetically deficient for this enzyme exhibit attenuated lung 
fibrosis in this model [76]. Interestingly, despite the 
increased lung ASM activity seen in wild-type mice, lung 
ceramide levels actually decreased after bleomycin 
challenge, which may have been due to the simultaneous 
upregulation of the ceramide-degrading enzyme, acid 
ceramidase [76]. 

SPHINGOLIPIDS AND SYSTEMIC SCLEROSIS 

 Sphingolipids have also been implicated in the 
pathogenesis of systemic sclerosis (SSc). SSc, or 
scleroderma, is an autoimmune connective tissue disease 
characterized by widespread vasculopathy and tissue fibrosis 
[2]. Although the hallmark of this disease is progressive 
thickening and fibrosis of the skin, fibrosis in SSc can 
involve many different organ systems, including the lungs, 
heart, kidneys, and digestive tract [2]. Like IPF, SSc is a 
progressive and often fatal disorder. Although there is an 
inflammatory component to the pathological changes seen in 
SSc, again similar to IPF it is largely refractory to 

 

Fig. (1). Overview of sphingolipid metabolism. 
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conventional anti-inflammatory and immunosuppressive 
medications [2]. TGF-  and its signaling pathways are 
thought to play a central role in the fibrogenesis seen in SSc 
[77]. Numerous studies have shown that sphingolipids, most 
notably S1P and dhS1P, can regulate TGF-  signaling 
pathways in skin cells in vitro, and there are recent data 
implicating altered sphingolipid signaling in the 
pathogenesis of human SSc. 

 In contrast to the role that S1P appears to play limiting 
the development of pulmonary fibrosis, S1P may promote 
the development of dermal fibrosis in SSc. S1P has been 
shown to induce activation of the canonical TGF-  signaling 
pathway in numerous cell types, including skin fibroblasts 
[78-81]. Specifically, S1P has been shown to induce 
phosphorylation of Smad2 and Smad3 and upregulate 
expression of Smad-dependent genes. This process appears 
to be independent of TGF-  itself, but dependent on the S1P 
receptors, suggesting that there is crosstalk between the S1P 
and TGF-  signaling pathways. S1P1, S1P2 and S1P3 have all 
been implicated in TGF-  signaling pathway activation by 
S1P, and the specific receptor(s) involved are likely cell 
type-dependent. Further support for S1P playing a pro-
fibrotic role in SSc comes from recent data showing that S1P 
levels are increased in the serum of SSc patients compared 
with matched controls [18]. Moreover, since S1P is known 
to regulate immunity and endothelial cell function, it may 
also play central roles in the autoimmune and vascular 
manifestations of SSc [82]. 

 Dihydrosphingosine 1-phosphate (dhS1P), which is also 
produced by sphigonsine kinase and binds to the S1P 
receptors (Fig. 1), has been shown to have opposing effects 
to those of S1P on TGF-  signaling in skin fibroblasts, and 
may therefore limit the development of dermal fibrosis [81]. 
dhS1P inhibits TGF- -mediated Smad2 and 3 phosphorylat-
ion and collagen synthesis in a manner dependent on PTEN, 
a tumor suppressor gene which has anti-fibrotic properties 
[83]. dhS1P promotes formation of a PTEN-Smad2/3 
complex, which results in the dephosphorylation of Smad2 
and Smad3 and reduced expression of Smad-dependent 
genes [81]. Reduced PTEN expression has been found in 
skin fibroblasts isolated from SSc patients, as well as in 
myofibroblasts in lung sections from IPF patients [14,83]. 
Whereas treatment of SSc fibroblasts with S1P resulted in 
further reduction of PTEN levels and increased collagen I 
production, treatment with dhS1P restored PTEN levels to 
normal and inhibited collagen synthesis [14]. 

SPHINGOLIPIDS AND FIBROSIS IN OTHER ORGAN 
SYSTEMS 

 The critical role that sphingolipids play in regulating 
tissue fibrosis does not appear to be limited to the lung and 
skin, as these signaling lipids have been implicated in liver, 
cardiac, and retinal fibrosis as well. S1P has been shown to 
be pro-fibrotic in two different mouse models of liver 
fibrosis. In carbon tetrachloride (CCl4)-induced liver fibrosis, 
S1P signaling through S1P2 appeared to promote fibrosis by 
mediating the accumulation of matrix-producing hepatic 
stellate cells and/or myofibroblasts [84]. In cholestasis-
induced liver fibrosis, S1P levels and S1P3 receptor 
expression were found to be elevated in the liver, and 
pharmacological inhibition of S1P3 attenuated the 

development of fibrosis in this model [15]. Attenuation of 
fibrosis by S1P3 inhibition in the cholestasis model was 
attributed to decreased S1P3-dependent homing of pro-
fibrotic, bone marrow-derived stem cells to the liver after 
injury. S1P has also been shown to have effects on hepatic 
stellate cell and myofibroblast survival, proliferation, 
migration and activation in vitro [85-88]. Lastly, alterations 
in circulating and liver S1P levels and S1P receptor 
expression patterns have been found in humans with liver 
fibrosis [19,87]. 

 Ceramide has also been investigated as a potential 
regulator of liver fibrosis. Ceramide has been shown to 
mediate hepatocellular apoptosis [89,90], and inhibition of 
acid sphingomyelinase (ASM) has been shown to reduce 
liver ceramide levels and attenuate liver fibrosis in a rat 
model of Wilson’s disease [91]. ASM haploinsufficient mice 
have also been shown to be protected from the development 
of liver fibrosis in both cholestasis- and CCl4-induced 
models of this disease [92]. Lastly, ASM activity has been 
found to be elevated in the blood of humans with Wilson’s 
disease, and ASM expression has been found to be elevated 
in the livers of patients with nonalcoholic steatohepatitis 
(NASH) [91,92]. 

 In addition to its pro-fibrotic effects noted in the liver, 
S1P-S1P3 signaling has also been found to promote fibrosis 
in the heart. Mice which overexpress the S1P-producing 
enzyme, sphingosine kinase 1 (Sphk1), develop spontaneous 
cardiac fibrosis. The ability of Sphk1 overexpression to 
produce cardiac fibrosis was attenuated when these mice 
were crossed to S1P3-deficient mice, suggesting that S1P’s 
pro-fibrotic effects in the heart are mediated at least in part 
by S1P3 [16]. S1P-S1P2 signaling has also been shown to 
induce myofibroblast differentiation and increased collagen 
production in rat cardiac fibroblasts [75]. 

 Finally, pro-fibrotic activity of S1P has also been 
observed in the eye. S1P stimulates retinal pigmented 
epithelial (RPE) cell proliferation, myofibroblast 
differentiation, and collagen synthesis, and anti-S1P 
neutralizing antibodies were shown to protect against the 
development of subretinal fibrosis [17,93]. 

CONCLUSIONS 

 Sphingolipids, such as S1P, dhS1P, and ceramide play 
key roles in regulating numerous cellular processes, many of 
which have been implicated both in physiological wound-
healing responses and the pathological wound-healing 
responses thought to contribute to multiple fibrotic diseases. 
As discussed above, there are accumulating data that 
sphingolipids play important roles in regulating the 
development of tissue fibrosis in numerous organ systems, 
including the lungs, skin, liver, heart, and eye (Table 1). In 
the lung, S1P signaling through S1P1 appears to protect 
against the development of fibrosis, likely through to its 
ability to limit vascular leak during the early, exudative 
response to lung injury. Conversely, S1P appears to promote 
fibrosis in other organ systems, likely through activation of 
TGF-  signaling pathways and/or by promoting fibroblast 
migration. Interestingly, dhS1P, which also signals through 
the S1P receptors, appears to oppose the pro-fibrotic effects 
of S1P in the skin. Lastly, data obtained from pharmacologic 
or genetic manipulation of acid sphingomyelinase (ASM) 
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suggest that ceramide may also regulate fibrosis in the lungs 
and liver. Although further study is needed to better 
elucidate the mechanisms and specific pathways involved in 
the pro- and anti-fibrotic effects of these and other related 
sphingolipids, it is becoming increasingly clear that targeting 
these lipids, their receptors, or the enzymes involved in their 
metabolism holds great promise for the development of 
much-needed therapies for fibrotic diseases. 
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