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Abstract:  Patients  with  Rheumatoid Arthritis  (RA) commonly develop osteoporosis  and fragility  fractures.  This  fact  cannot  be
explained  only  with  the  use  of  glucocorticoids,  known  to  be  detrimental  for  bone  health.  RA  is  characterized  by  a  chronic
inflammation caused by the continuous activation of innate and adaptive immunity with proinflammatory cytokines overproduction.
This process is detrimental for several organs and physiological processes, including the impairment of bone remodeling. We will
briefly review the pathogenesis of inflammation-related bone loss in RA, describing well-known and new molecular pathways and
focusing on vitamin D and Parathyroid Hormone role.
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1.  OSTEOPOROSIS  IN  RHEUMATOID  ARTHRITIS:  EPIDEMIOLOGICAL  EVIDENCES  AND  RISK
FACTORS

Patients  affected  by  inflammatory  arthritis  in  general,  and  Rheumatoid  Arthritis  (RA)  in  particular,  show  an
increased risk of generalized bone loss; this is the result of the coexistence of common risk factors, such as age, female
gender, smoke and body mass index along with RA-related features [1].

Generalized osteoporosis, defined as a T-score -2.5 Standard Deviations (SD) in the hip and/or in lumbar spine as
proposed by the World Health Organization (WHO), is highly prevalent among RA patients: in a large study on RA
patients, a two-fold increase in osteoporosis rate was seen in 394 women, with respect to a control group; similarly a
doubled rate of reduced Body Mass Density (BMD) was reported in men [2, 3]. In a more recent cohort of 304 RA
consecutive patients, the prevalence of osteoporosis was 29.9%, almost two-fold of the one observed in 904 controls
matched for age and sex [4].

Consistently,  patients  with  RA  are  at  higher  risk  for  vertebral  and  non-vertebral  fractures:  according  to  a
retrospective  observational  study  on  more  than  47,000  RA  patients,  the  incidence  rate  for  osteoporotic  fracture  at
typical sites was 9.6 per 1,000 person-years, 1.5 times higher than the rate observed in subjects not affected by RA [5].
Moreover, Weiss et al in 2010, reported a 2.9 OR for hip fractures and a 2.7 OR for vertebral fractures in patients with
RA with respect to the general population [6].

It has been argued that the increased risk of fractures can be explained by the use of Glucocorticoids (GC), however
this is only one of the RA-related factors explaining bone loss in inflammatory arthritis. Consistently, Van Staa et al.
found out-patients with RA who were never exposed to GC, were in any case characterized by an increased Relative
Risk (RR) (1.5, CI 95%: 1.2-1.9) for vertebral fractures up to 1.7 (CI 95%: 1.5-2.0) for hip fractures, suggesting that
disease by itself is an important and independent risk factor for accelerated bone loss [7]. The increased risk of fractures
in RA
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is, therefore, multifactorial and includes the general background risk (clinical risk factors, BMD) on top of RA-specific
risk factors (Table 1) [8].

Table 1. The table shows general risk factors for osteoporosis versus RA related risk factors.

General Risk Factors for Osteoporosis RA Related Osteoporosis Risk Factors
Female sex Steroids

Age Systemic inflammation
Early Menopause Osteoclasts activation

Amenorrhea Osteoblasts inhibition
Asian or European Ethnicity Disease activity

Low BMD Disease duration
Steroids High titer of rheumatoid factor

Smoke and Alcohol High titer of ACPA
Vitamin D and Ca2+ deficiency Inactivity due to joint pain

Prolonged immobilization –
Low weight –

Poor visual acuity –

Interestingly,  bone  loss  occurs  very  early  in  the  course  of  the  disease,  when other  risk  factors  such  as  reduced
mobilization are rarely present, testifying the relevance of the inflammatory state. In early arthritis, in fact, the bone loss
is evidently related to the parameters of inflammation [9 - 12].

2. BONE LOSS AND SYSTEMIC INFLAMMATION

It  is  nowadays  well  known that  systemic  inflammation  influences  bone  turnover,  favoring  bone  resorption  and
dampening its formation. Proinflammatory mediators are involved in this process, as witnessed by their involvement in
the pathogenesis of hormonal deficiency-induced bone loss. Nude female mice deficient in T cells,  as well as TNF
knock-out  mice,  are  protected  against  bone  loss  induced  by  ovariectomy,  while  bone  loss  occurs  if  these  mice  are
injected with T cells from wild-type mice [13]. Similarly, IL6-deficient mice are protected from oestrogen deficiency-
induced bone loss [14]. Moreover, in postmenopausal women, anti-IL1 or anti-TNF therapy can limit the increase in
bone resorption markers which occurs after discontinuation of oestrogen replacement therapy [15].

In  the  last  years,  new insights  into  the  field  of  osteoimmunology  expanded  our  knowledge,  leading  to  a  better
comprehension of the biological systems involved in this process.

The best known molecular pathway involved in inflammatory osteoporosis is, probably, represented by Receptor
Activator of Nuclear Factor Kappa B (RANK) / RANK ligand (RANKL) system. Since early ‘80s, it has been proposed
that osteoblasts could regulate osteoclasts activity, based on the observation that osteoblasts, but not osteoclasts, express
receptors of bone-resorbing factors, such as PTH and prostaglandin E2 [16]. In the following years, an osteoblastic
transmembrane protein, called RANKL was cloned and shown to be upregulated by bone-resorbing factors [17]. It acts
via  binding  its  receptor,  RANK,  on  osteoclasts  precursor,  in  a  cell-to-cell  interaction  which  induces  osteoclasts
differentiation and activation Fig. (1) [18, 19]. A decoy receptor, which suppresses osteoclasts differentiation, has also
been cloned (Osteoprotegerin -  OPG) [20].  Proinflammatory cytokines,  such as Tumor Necrosis Factor α (TNF-α),
interleukin (IL)-1, IL-6 and IL-17, enhance RANKL mediated differentiation, proliferation and activity of osteoclasts
[8, 17, 21 - 23]. T-cells, and Th17 in particular have the most relevant role in creating a “osteoclastogenic” environment
during  systemic  inflammation  by  releasing  IL-17,  RANKL,  TNF,  IL-1,  and  IL-6  [8]  thus  enhancing  osteoclasts
differentiation and bone resorption.

In the last years, a direct correlation between autoimmunity and bone loss in RA has been unveiled; in fact, the
classical antibodies of seropositive RA, Rheumatoid Factor and antibodies recognizing citrullinated proteins, have been
proposed as potent osteoclasts inducers [24].
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Fig.  (1).  The  figure  shows  RANK/RANKL  system.  Multinucleated  osteoclasts  are  formed  by  cell–cell  fusion  of  mononuclear
preosteoclasts.  Osteoclast  precursors  express  DC-STAMP (Dendritic  cells-specific  transmembrane protein)  which is  the protein
responsible of the fusion process. Moreover, they express on their membrane RANK and c-Fms, which is the receptor of M-CSF
(Macrophage colony stimulating factor). In presence of M-CSF, osteoblasts regulate the fusion process by RANKL expression. As
shown in the figure, the active form of vitamin D is between the stronger inducers of RANKL expression [19].

A further biological system which is involved in “inflammatory osteoporosis” is Wnt/ß catenin pathway. ß catenin
is a transcriptional co-activator normally degraded in the cytoplasm by a multiprotein degradation complex, consisting
of  the  tumor  suppressors  Axin  and  Adenomatous  Polyposis  Coli  (APC),  Ser/Thr  kinases  GSK-3 and  CK1,  Protein
Phosphatase 2A (PP2A) and the E3-ubiquitin ligase β-TrCP; this complex starts the degradation process of β-catenin by
targeting it for ubiquitination, after which β-catenin is subsequently digested by the proteasome [25]. The activation of
the Wnt signaling pathway leads to the accumulation of ß catenin. In fact, when a member of the Wnt protein family
binds the transmembrane receptor Frizzled (Fz) and its coreceptors LRP 4, 5 or 6 (lipoprotein receptor-related proteins),
axin is removed from the degradation complex and β catenin is released, thus accumulating itself in the cytoplasm [26]
Fig. (2). Finally, β catenin translocates to the nucleus where it links to other transcriptional factors (TCF/LEF, T-cell
factor/lymphoid enhancing factor) creating a complex which enhances the transcription of target genes [27]. Several
secreted protein families antagonize or modulate Wnt/β-catenin signaling: sFRPs (secreted Frizzled-related proteins)
and WIF (Wnt inhibitory protein) bind to Wnt, and in the case of sFRPs, also to Fz acting as Wnt antagonists [28].
Other  important  Wnt  inhibitors  are  the  members  of  Dickkopf  (Dkk)  family  and  Sclerostin,  which  are  LRP5 and  6
ligands/antagonists; they prevent Wnt proteins to bind to LRP5/6, thus inhibiting the Wnt/β-catenin signaling [29, 30].
Wnt signaling is essential for skeletal formation and development and is involved in chondrogenesis, in differentiation,
survival and proliferation of osteoblasts [31, 32], synthesis of bone matrix as well as differentiation and function of
osteoclasts during development [33]. During systemic inflammatory disease, TNF-α induces osteocytes to synthetize
sclerostin and DKK-1 [34], thus negatively affecting osteoblasts activity and blocking new bone formation. In a TNF-α
transgenic  mouse  model,  DKK-1  is  overexpressed,  blocking  osteoblasts  differentiation  and  promotes  sclerostin
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expression and osteocyte death [35]. Sclerostin, plays a crucial role in these activities, since its inhibition in the same
model reverted the inflammation-related bone loss [36]. Likewise, IL-6 has been described to inhibit Wnt signaling in
synovial fibroblasts and in osteoblasts [37].

Fig. (2). The figure shows Wnt/ß-catenin system. ß-catenin is normally degraded by a multiprotein complex, consisting of Axin1,
Adenomatous Polyposis Coli (APC), GSK-3 and CK1, the protein phosphatase 2A (PP2A) and the E3-ubiquitin ligase β-TrCP; after
ubiquitination,  β-catenin  is  digested  by the  proteasome (A).  When a  member  of  the  Wnt  protein  family  becomes available,  the
transmembrane receptor Frizzled (Fz) and its coreceptors LRP 4, 5 or 6 (Lipoprotein Receptor-related Proteins) are activated and
phosphorylated leading to the recruitment of the protein Disheveled (Dvl). Axin is seized and the degradation complex undergoes
inhibitory  rearrangements,  leading  to  the  accumulation  of  ß-catenin  and  its  translocation  to  the  nucleus  where  it  acts  as  a  co-
transcription  factor  (B).  Proinflammatory  cyrokines  are  able  to  inhibit  this  pathway  by  enhanincg  the  production  of  inhibitory
molecules like DKK and sclerostin, which prevent the interaction between Wnt and its receptors.

In a study by Terpos et al. on RA patients, an osteoprotegerin/RANKL ratio 5 times lower than that observed in
healthy controls has been reported, with an inverse correlation between circulating osteoprotegerin levels and disease
activity (as DAS28 score) and a positive correlation between RANKL and C-reactive protein. Furthermore, DKK-1 and
sclerostin levels were higher in RA patients than in healthy controls. After two months of treatment with tocilizumab (a
humanized anti-interleukin-6 receptor antibody), the osteoprotegerin/RANKL ratio increased proportionally to clinical
improvement  and  suppression  of  inflammation;  at  the  same  time,  sclerostin  concentration  increased  while  DKK-1
decreased with respect to baseline [38]. Consistently, prospective studies have reported a protective effect of antiTNF
agents on bone loss [39, 40].

The improvement  of  our  knowledge about  the mechanisms underlying bone loss,  helped in the development  of
novel treatment strategies [41, 42]. In fact, in the last decades, new drugs were developed. RANK/RANKL system has
been the first targeted; in fact, a human monoclonal antibody, denosumab, targeting RANKL is the first biological drug
developed for the treatment of osteoporosis. According to the results of the FREEDOM trial, the use of denosumab
twice yearly for 36 months was associated with a 68% reduction in vertebral fractures (RR 0.32, 95% CI 0.26-0.41) and
a 40% reduction in hip fractures (HR 0.60, 95% CI 0.37-0.97) [43]. In the open-label extension of the FREEDOM trial,
denosumab  treatment  for  up  to  10  years  was  associated  with  low  rates  of  adverse  events,  low  fracture  incidence
compared with that observed during the original trial, and continued increases in BMD [44]. Interestingly, targeting
RANKL in the specific setting of RA seems to collaterally give protection against the development of erosions [45]; on
this basis, denosumab might be considered a promising novel treatment for the management of RA [46].

More recently, neutralisation of sclerostin emerged as a novel therapeutic approach. Romosozumab, a monoclonal
antibody anti-sclerostin, induced a significantly higher increase in BMD than alendronate, teriparatide or placebo in a
phase 2 study on 419 postmenopausal women [47]. In the phase 3 trial FRAME [48], romosozumab was effective in
reducing  the  risk  of  vertebral  fracture  after  12  months  of  treatment,  although  no  effect  was  seen  on  non-vertebral
fractures. Ongoing clinical trials will better clarify the clinical usefulness and safety of this molecule.

Finally, a further new drug has been recently proposed for the use in the management of osteoporosis. Odacatinib is
a selective inhibitor of Cathepsin K, a protein secreted by mature osteoclasts to degrade bone matrix [49]. Although the
interim  results  of  the  phase  3  study  (LOFT)  were  promising  in  terms  of  BMD  improvement  [50],  following  the
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demonstration of an increased HR for strokes, Merck announced the discontinuation of the development of odanacatib
[51].

3. VITAMIN D/PTH AXIS AND BONE HEALTH

Vitamin D3 is  a  pleiotropic  hormone,  the  main activities  of  which are  the  result  of  the  interaction of  its  active
metabolite (1,25(OH)2 vitamin D3, also called calcitriol) with the Vitamin D Receptor (VDR). When 1,25(OH)2 vitamin
D3  becomes  available,  the  VDR  heterodimerizes  with  Retinoid  X  Receptor  (RXR)  and  moves  from  cytoplasm  to
nucleus,  where  it  binds  specific  DNA  regions  (Vitamin  D  Responsive  Elements,  VDRE).  VDR,  indeed,  acts  as  a
transcriptional factor, either up- or downregulating many different target genes [52, 53]. Although recent evidences
have related vitamin D to many different aspects of human physiology, the more relevant activity of this hormone is
related to bone homeostasis and calcium/phosphate balance as a result of the actions on several targets: kidney, gut,
parathyroid gland, bone.

1,25(OH)2  vitamin  D3  co-participates  with  Parathyroid  hormone  (PTH)  in  the  maintenance  of  calcium  plasma
concentration in the narrow range of normality; indeed, this has relevant implications in bone homeostasis, being bone
the main storage site of calcium in human body. Calcitriol is able to increase calcium concentration, by enhancing its
absorption in the gastrointestinal tract [54]; the active transcellular calcium absorption, mediated by 1,25(OH)2 vitamin
D3, is a saturable process that involves the passage of calcium across the luminal brush border membrane, its transfer
into the cell cytoplasm and its active extrusion through the basolateral membrane. 1,25(OH)2 vitamin D3 upregulates
some key genes in calcium intake, such as calcium channel TRPV6 [55], Calbindin-D9k [56] and the basolateral active
channel  intestinal  plasma  membrane  ATPase  (PMCA1b)  [57].  Moreover,  calcitriol  acts  on  the  kidney,  stimulating
calcium intake by inducing the expression of key genes involved in calcium handling in tubules, like TRPV5, TRPV6
and calbindin-D28k [58].

PTH synergistically acts together with vitamin D to maintain calcium plasma concentrations. In fact, PTH secretion
is regulated by Calcium Sensing Receptor (CaSR) [59]; in response to decrements in serum ionized calcium, CaSR
induces  the  secretion  of  PTH  which  is  able  to  directly  enhance  calcium  reabsorption  in  the  distal  tubule  through
regulation of TRPV5 [60]. Moreover, it is a strong inducer of CYP27B1 the hydroxylase which mediates the last step of
vitamin D activation [61].

Along with calcium plasma concentration, vitamin D also regulates phosphate metabolism. Serum phosphate levels
are  not  as  tightly  regulated  as  serum  calcium,  and  they  rise  with  a  high  phosphorus  diet,  particularly  after  meals.
Approximately 70% of dietary phosphate is absorbed in the small intestine. Phosphate absorption mainly occurs by a
passive, concentration-dependent diffusion process. However, a fraction of phosphorus is absorbed through a saturable,
active transport, which is facilitated by 1,25(OH)2 vitamin D3 [62]. On the contrary, PTH has a phosphaturic effect on
kidney [63]. Taking together all these actions, vitamin D is responsible for an increase of calcium and phosphate plasma
concentration, while PTH has hypercalcemic and hypophosphatemic effects.

More  interestingly  for  the  aim of  the  present  review,  both  vitamin  D and  PTH directly  act  on  bone.  1,25(OH)2

vitamin  D3  acts  on  RANK/RANKL  regulatory  system.  1,25(OH)2  vitamin  D3  is  one  of  the  stronger  inducers  of
RANKL in osteoblasts [64] and, on the other hand, a suppressor of OPG synthesis [65], acting as a master regulator of
physiological bone turnover. Similarly, PTH increases calcium and phosphate efflux through stimulation of RANKL by
osteoblasts,  which  in  turn  stimulates  osteoclast-mediated  bone  resorption  [66].  Vitamin  D  and  PTH  interplay  in  a
crosstalking balance. In fact, if on one hand PTH enhances vitamin D activation, calcitriol both indirectly and directly
downregulates  PTH  production  and  release  [67].  Moreover,  1,25  (OH)2Vitamin  D3  inhibits  parathyroid  cells
proliferation  [68].  This  explains  why,  in  case  of  inadequate  vitamin  D  plasma  concentration,  PTH  plasma
concentrations increase, aiming to maintain calcium concentration within physiological ranges, leading to the so-called
secondary hyperparathyroidism [69].

From the previous discussion, it is evident that the maintenance of vitamin D/PTH axis is essential for bone health
since both hormones have effects on the two main mechanisms leading to bone formation: bone turnover and bone
mineralization, by regulating calcium/phosphate balance. Although historically well characterized, new lights have been
shed on this hormonal axis after the discovery of novel mediators of bone homeostasis, which interact with vitamin D
and PTH. Fibroblasts Growth Factor 23 (FGF23) was firstly identified in mouse brain in 2000 [70] and has two main
physiological functions: a phosphaturic effect emanating directly from bone that coordinates bone phosphate flux and a
counter-regulatory effect to vitamin D activity. It is mainly expressed by osteocytes [71] and osteoblasts [72] and its
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activity is mediated by FGF23 receptor together with an obligate coreceptor, αKlotho [73]. FGF23 synthesis is induced
by Phosphate-regulating neutral endopeptidase X-linked (PHEX), Dentin Matrix Protein (DMP)-1, sustained phosphate
load, 1,25 (OH)2 vitamin D3, low Klotho, PTH and serum ionized calcium [74]. Its main action is to counter-regulate
vitamin D activity  by suppressing CYP27B1 and enhancing the inactivating enzyme CYP24A1 in the kidney [75].
Moreover,  FGF23  directly  inhibits  phosphate  reabsorption  in  the  kidney  [76]  and  suppresses  PTH  synthesis  by
parathyroid  cells  [77].  Consistently  with  these  findings,  the  major  consequences  of  FGF23  excess  are
hypophosphatemia, aberrant vitamin D metabolism, impaired growth, and rickets/osteomalacia. Inversely, deletion of
FGF23 in mice results in hyperphosphatemia, excess in calcitriol and soft tissue calcifications [78]. The discovery of
FGF23 allowed us to understand that the relationship between vitamin D and bone is bidirectional; if, on one hand,
vitamin  D  is  essential  for  bone  health,  on  the  other  hand,  a  bone-derived  mediator  is  able  to  modulate  vitamin  D
metabolism, generating an intricate crosstalk. The relevance of vitamin D in bone health is confirmed by clinical data;
in fact, in vivo, a deficient vitamin D status and the consequent secondary hyperparathyroidism cause osteoporosis and
osteomalacia, which are often undetected but lead to a decrease in BMD and to an increased risk of fractures. In young
children  who have  little  mineral  in  their  skeleton,  this  defect  results  in  a  variety  of  skeletal  deformities  classically
known as rickets [79]. The definition of the optimal vitamin D threshold for bone health is still largely controversial,
however, a 75 nmol/l plasma level is deemed adequate by many for fracture prevention [80].

4. RA-RELATED OSTEOPOROSIS: THE ROLE OF VITAMIN D

The maintenance of a normal vitamin D status remains of paramount relevance in RA; in fact, an inadequate vitamin
D  status  can  magnify  the  deleterious  effect  of  inflammation  on  bone  density  [81  -  83].  Moreover,  some  authors
postulated  a  potential  role  of  vitamin  D  as  a  modulator  of  inflammation  in  RA,  although  the  evidences  are  still
inconclusive [81]. RA patients show a decreased BMD, being therefore at higher risk for osteoporosis and fractures [84]
so an impairment of vitamin D status can be claimed as a potential pathogenetic factor of RA-related osteoporosis.

First of all, a very high prevalence of hypovitaminosis D has been reported in patients affected by Autoimmune
Rheumatic Diseases (ARD) in general  and in RA patients specifically.  Considering non-supplemented patients,  the
prevalence of hypovitaminosis D, in a rheumatology outpatient clinic in Northern Italy, has been reported to be as high
as 87% [85]. Similar prevalences have been reported in other cohorts of rheumatic patients who were not undergoing
cholecalciferol supplementation, all over the world [86 - 88]. However, whether ARD are independent risk factors for
hypovitaminosis is highly debated; although lower plasma 25(OH) vitamin D concentrations have been described in
ARD patients with respect to the general population by some authors [89-91], others did not confirm this observation
[92 - 94]. Specifically looking at RA patients, a prevalence of 85% and 45% has been reported for insufficiency and
deficiency, respectively considering the thresholds of 75 and 50 nmol/l [88, 95]. Despite these discrepancies, there is a
general agreement about the association of vitamin D levels with disease activity [91, 96].

In this context it is relevant to underline the immunoregulatory actions of vitamin D. In fact, the active form of
vitamin D regulates the activity of monocytes and macrophages [97], B and T cells [98 - 101]. Interestingly, vitamin D
is able to decrease the production of crucial proinflammatory cytokines, such as IL-6 and TNFα which are involved in
the pathogenesis of bone loss [102]; it could be therefore argued that the deficient vitamin D status might enhance the
proinflammatory milieu characterizing RA, thus favouring the bone loss.

An indirect evidence of the implication of vitamin D in the pathogenesis of osteoporosis in RA is derived by the
evidence that a VDR polymorphism has been linked to bone loss in RA [103]; in particular Rass and colleagues [104]
found a lower BMD in RA patients carrying the BB and Bb genotypes of the VDR BsmI polymorphism with respect to
carriers of the bb genotype. These results suggest that the B allele may be a marker for increased bone reabsorption and
bone loss in RA.

Finally, a further element of interest is related to a recent observation according to which ARD patients show an
impairment of vitamin D/PTH axis. In fact patients affected by inflammatory rheumatic diseases have higher plasma
PTH than controls for similar vitamin D concentrations; in other words, PTH suppression seems to be more refractory
to plasma vitamin D than in general population, contributing to the development of a “relative hyperparathyroidism”
[105].  Consistently,  PTH  concentration  correlates  with  disease  activity  in  RA,  irrespectively  of  vitamin  D
concentration; in fact, patients with erosive disease seem to show higher plasma PTH concentrations [106]. Different
models might explain these findings. Chronic inflammatory processes may reduce parathyroid cells sensitivity to active
vitamin D. Alternatively, immune cells might consume 1,25(OH)2 vitamin D3, at the expense of the amount available to
act on bone health [105]. In fact, vitamin D can be directly activated in calcitriol by CYP27B1, which is expressed by



306   The Open Rheumatology Journal, 2018, Volume 12 Sainaghi and Gibbin

human macrophages [107, 108] and dendritic cells [109].

The  main  issue  is  how  to  correct  vitamin  D  status  in  RA.  A  guideline  dealing  with  cholecalciferol  dietary
requirements and supplementation in general population has been released in 2011 by The Endocrine Society Task
Force [110]. In case of inadequate vitamin D status, the Task Force suggests the use of 50,000 IU of vitamin D2 or
vitamin D3 once a week for 8 weeks to achieve a blood level of 25(OH) vitamin D above 75 nmol/l, followed by a
maintenance therapy of 1500– 2000 IU/d. However, this recommendation is still largely debated and not universally
accepted [111]; the best regimen in the specific subset of RA patients is even less defined. It has been shown that a high
loading dose of 300,000 IU, followed by a maintenance daily dose of 800–1000 IU cholecalciferol [112], could be of
advantage,  being  more  effective  in  inducing  PTH  suppression  along  with  vitamin  D  normalization  (Table  2).  The
potential advantages of this regimen need to be weighted at the light of recent findings [113] suggesting an increase in
falls and fractures risk in patients treated with a high cholecalciferol dose (500,000 IU). This last observation has been
recently  replicated  in  a  randomized  clinical  trial;  although  higher  monthly  doses  of  vitamin  D  (60,000  IU)  were
effective in reaching normal 25(OH) vitamin D plasma concentrations, they had no benefit on lower extremity function
and were associated with increased risk of falls compared with 24,000 IU. More specific studies on RA are required to
better ponder the potential risks and advantages of high doses regimens in this population [114].

Table 2. The table summarizes the principle evidences of the role of vitamin D in RA related osteoporosis.

Author Year [Cit. Number] Main Findings
Zhang J, et al. 2012 [102] Vitamin D decreases production of IL-6 and TNFα

Ranganathan P, et al. 2009 [103] Specific Vitamin D Receptor (VDR) alleles are associated with accelerated generalized bone loss in RA

Rass P, et al. 2006 [104] The B allele of the VDR gene BsmI polymorphism is correlated with increased osteoclast and osteoblast
function

Sainaghi PP, et al. 2011 [105] Presence  of  higher  plasma  PTH  levels,  contributing  to  the  development  of  a  “relative
hyperparathyroidism”  condition

Sainaghi PP, et al. 2013 [112] High loading dose of cholecalciferol (300.000 UI), followed by a maintenance daily dose(600-800 UI),
could be more effective in inducing PTH suppression

CONCLUSION

In conclusion, osteoporosis is the main issue in the management of RA patients, being a typical comorbidity of
inflammatory arthritis. Systemic inflammation is crucial in the development of bone loss, since it causes the impairment
of different biological system involved in the maintenance of bone homeostasis. Vitamin D/PTH axis is involved in
bone health and different considerations support the hypothesis that vitamin D status is particularly relevant for the
development  of  osteoporosis  in  RA  patients.  Although  further  studies  are  required  to  better  elucidate  this  topic,
obtaining a normal vitamin D status is paramount in preventing RA-related osteoporosis; therefore, the correction of a
deficient vitamin D status should be suggested to each rheumatic patient. Currently, there is no consensus on the best
regimen for these patients and further studies are required to better address this important aspect of the management of
RA patients.
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