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Abstract: The role of Vitamin D hormone in human health and disease is still debated. Recently, growing attention has been paid to
its putative role in cardiovascular system homeostasis with several studies that suggested a correlation between low vitamin D levels
and  increased  cardiovascular  risk.  Several  mechanisms  are  involved  in  the  development  of  cardiovascular  diseases:  systemic
inflammation, endothelial dysfunction, arterial hypertension and insulin resistance. In the present paper, we have revised the current
literature supporting a role for vitamin D in the development of these pathogenetic processes. Finally, we have evaluated the current
evidence linking vitamin D to atherosclerosis and its natural consequence, cardiovascular diseases.
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1. INTRODUCTION

Vitamin D is a fat-soluble hormone, the main activity of which is the regulation of calcium/phosphate metabolism.
This bone-related activity is accomplished by acting with calcium-sparing effects on the gut [1], the parathyroid glands
[2 - 4] and the kidney [5]. Vitamin D plays a crucial role for bone metabolism not only because calcium and phosphate
are  essential  components  of  bone  turnover  mechanisms,  but  also  because  vitamin  D  can  directly  control  the
physiological  turnover  of  bone at  the level  of  osteoblasts  and osteoclasts  [6  -  9].  There is  overwhelming evidence,
however, that Vitamin D Receptor (VDR) is expressed not only by cognate vitamin D targets but also by other cell
types and tissues,  implying that vitamin D has far a wider role in human physiology than previously thought.  New
putative functions of vitamin D have thus been explored and confirmed by both preclinical in-vitro and in-vivo studies.
For instance, vitamin D is able to induce epidermal cells differentiation [10], has a crucial role in proliferation and
differentiation  of  the  nervous  system,  affecting  neuroprotection,  neurotransmission,  and  neuroplasticity  [11].
Furthermore, vitamin D has antiproliferative actions [12] and regulates both the innate and adaptive immune system
activity [13 - 21].

Potential  new functions  of  vitamin  D have  been  recently  suggested  for  the  regulation  of  cardiovascular  health,
leading to the hypothesis that low vitamin D levels can be considered as a new potential marker of cardiovascular risk
[22].  This  inference takes  origin  from several  associative observations,  the  most  convincing of  which are  the  wide
expression of the VDR in the cardiovascular system [23] and the inverse correlation existing between low vitamin D
levels and important cardiovascular risk factors, such as systemic inflammation [24], arterial hypertension [25], insulin
resistance [26], and endothelial dysfunction [27].
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In  this  paper,  we aim to  provide  an  overview of  current  evidence  linking  vitamin  D to  the  cardiovascular  risk,
focusing our attention on the potential role of this hormone in the pathogenesis of atherosclerosis and Cardiovascular
Diseases (CVDs).

1.1. Vitamin D Metabolism and Vitamin D Deficiency

Although several foods are dietary sources of vitamin D, endogenous synthesis accounts for the largest amount of
active vitamin D in humans. In the skin, 7-dehydrocholesterol is photolysed in cholecalciferol (vitamin D3) after the
exposure to UV rays [28]. Cholecalciferol is then hydroxylated to 25-hydroxyvitamin D [25(OH)D3] in the liver [29];
25(OH)D3, also known as calcifediol, circulates in the bloodstream bound to the vitamin D Binding Protein (DBP) and,
minimally, as a free hormone. DBP, more generally, act as a carrier for all the isoforms of vitamin D [30, 31]. Vitamin
D  is  finally  activated  into  1,25-dihydroxyvitamin  D3  [1,25(OH)2D3]  (also  termed  calcitriol)  by  the  1α-hydroxylase
(CYP27B1), in the kidney [32]. The activity of the CYP27B1 is strictly controlled by parathyroid hormone (PTH), in a
positive fashion [33], and calcium and 1,25(OH)2D3,  in a negative fashion [34]. The inactivation of 1,25(OH)2D3  is
mediated by the CYP24A1 enzyme, which catalyzes the conversion to a 100-fold less active metabolite [35].

1,25(OH)2D3  acts  by binding the VDR, a nuclear  receptor  which heterodimerizes with the Retinoid X Receptor
(RXR); the VDR/RXR complex moves from the cytoplasm to the nucleus and acts to upregulate or downregulate the
expression of many target genes [36].

Vitamin  D  deficiency  causes  a  decrease  in  intestinal  dietary  calcium  and  phosphorus  absorption,  leading  to
secondary  hyperparathyroidism  [37,  38],  which  maintains  serum  calcium  in  the  normal  range  at  the  expense  of
mobilizing calcium from the skeleton and increasing phosphorus wasting in the kidneys. This results in an inadequate
calcium-phosphorus  product  and  in  a  mineralization  defect  in  the  skeleton,  leading  to  rickets  in  children  [39]  and
osteomalacia in adults [40 - 42].

Although 25(OH)D3 is not the most active metabolite, its stable concentrations and long half-life make it a reliable
plasmatic  marker  of  vitamin  D  status  [43].  The  definition  of  vitamin  D  adequacy  is  historically  based  upon  the
identification of the plasma 25(OH)D3 threshold able to suppress PTH synthesis [44]. Although no definitive consensus
currently exists, the majority of authors would agree with the definition of vitamin D status as deficient for 25(OH)D3

concentration lower than 50 nmol/l (20 ng/ml), insufficient for 50-75 nmol/l (20-30 ng/ml) and adequate for 75-250
nmol/l (30-100 ng/ml) [45]. Hypovitaminosis D is a diffuse health issue worldwide, with a very high prevalence either
in otherwise healthy or in hospitalized adults [46 - 49]. Its prevention and correction are therefore essential for bone
health,  but  also  necessary  for  its  putative,  collateral  advantages  on  different  aspects  of  human  physiology.  Oral
cholecalciferol  represents  the  gold  standard  for  vitamin  D  supplementation,  in  healthy  subjects  with  neither
malabsorption  nor  chronic  kidney  disease;  either  daily  supplementation  or  loading-dose  based  regimens  have  been
proposed, although the best supplementation strategy is still to be defined [45, 50 - 55].

2. VITAMIN D AND SYSTEMIC INFLAMMATION

One of  the  best  characterized extra-skeletal  activities  of  vitamin D is  the  regulation of  the  immune system and
inflammatory response.

In  vitro,  1,25(OH)2D3  affects  functional  activities  of  monocytes  and  macrophages.  Tumor  cell  cytotoxicity,
phagocytosis, and mycobactericidal activity of monocytes/macrophages are enhanced by exposure to active vitamin D
[56, 57], while monocyte function as an Antigen Presenting Cell (APC) is decreased [58], as well as the production of
proinflammatory  cytokines  such  as  Interleukin  6  (IL-6)  and  Tumor  Necrosis  Factor  α  (TNFα)  [59].  Furthermore,
1,25(OH)2D3 promotes terminal differentiation of monocytes towards a macrophage phenotype [60] and inhibits the
differentiation of murine and human Monocytes into Dendritic Cells (DCs) in vitro [61]. 1,25(OH)2D3 also impairs DCs
function as APCs, by downregulating MHC II and costimulatory molecules expression [62], as well as chemotaxis [63],
thus affecting adaptive immune system, which is strictly regulated by DCs activity. However, vitamin D also directly
regulates adaptive immunity. In fact, it is able to inhibit the proliferation and to induce the apoptosis of activated B
cells; furthermore, 1,25(OH)2D3 inhibits plasma cells and post-switch memory B cells differentiation and significantly
reduces  immunoglobulin  secretion  [64].  Finally,  1,25(OH)2D3  acts  on  T  cells:  vitamin  D inhibits  T  cells  cytotoxic
activity by suppressing Fas-ligand expression in activated T cells [65] and drives CD4+ differentiation, leading to a
suppression of Th1 and Th17 function towards a more favourable and less inflammatory Th2 or Treg phenotype. As such,
1,25(OH)2D3 reduces the expression of the Th1 associated cytokines IL-2, TNF-α, and IFNγ [66]. On the other hand, key
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Th2  cytokines  like  IL-4  and  IL-5  are  upregulated  [67,  68].  Th17  is  a  specific  subset  of  CD4+ cells  able  to  produce
IL-17A, IL-17F, IL-21, IL-22 [69], thus playing a pivotal role in inflammation. On the contrary, regulatory/suppressive
T cells (Treg) contribute to the maintenance of self-tolerance. Treg cells account for 5-10% of total number of T CD4+
cells in healthy humans and play an important role in supporting immune homeostasis by producing anti-inflammatory
cytokines, including IL-10 and TGF-β1 [70 - 72]. 1,25(OH)2D3 has been shown able to induce the differentiation of Treg

by enhancing the expression of CTLA-4 and Foxp3, while inhibiting IL-17, IL-21 and IFNγ expression [73]. On the
contrary, 1,25(OH)2D3 inhibits Th17 proliferation [74]. As a result, the secretion of TGF-β1 is enhanced [75], paralleling
a decrease in Th17 cytokines signature production [76].

In vitro data led many groups to investigate whether plasma 25(OH)D3 concentration could independently predict
the  risk  for  autoimmune  diseases  and  whether  vitamin  D  supplementation  could  benefit  the  treatment  of
inflammatory/immune conditions [77 - 85]. However, there is still a relevant gap between the strength of the in vitro
data and the faintness of the in vivo findings, which do not allow, at the moment, to clarify the real relevance of vitamin
D in the development of autoimmunity.

2.1. Vitamin D and Endothelial Dysfunction

Vitamin D activity has also been related to the vascular system. In fact, endothelial cells express both the VDR and
the CYP27B1 enzyme, thus allowing the autocrine activation of 25(OH)D3 [86, 87]. This is particularly relevant, since
vitamin  D  has  a  potential  protective  effect  on  the  vascular  endothelium.  In  vitro,  vitamin  D  is  able  to  induce  the
synthesis  of  Nitric  Oxide  (NO)  through  regulation  of  the  endothelial  isoform  of  NO  synthase  (eNOS)  [88].
Experimentally, administration of 1,25(OH)2D3 reduces inflammatory and atherosclerotic parameters [89] and blunts the
deleterious effect of advanced glycation end products on the endothelium, thereby improving the activity of the NO
system [90]. Furthermore, 1,25(OH)2D3 stimulates the migration and proliferation of endothelial cells [91] and in vitro
vitamin  D treatment  improves  the  capacity  of  endothelial  progenitor  cells,  isolated  from diabetic  subjects,  to  form
colonies [92];  taken together,  these findings suggest  a  potential  role for  this  hormone in vessel  damage healing.  In
addition to its ability to modulate the effects of proinflammatory cytokines on the vascular endothelium [93] and to
decrease the expression of endothelial adhesion molecules [94, 95], vitamin D can also exert antioxidant properties [96].

In vivo, 25(OH)D3 concentrations are related to endothelial dysfunction. In fact, vitamin D status has been inversely
associated with the concentration of circulating markers of endothelial dysfunction in obese patients [97]. Consistently,
hypovitaminosis D has been associated to endothelial dysfunction in patients affected by metabolic syndrome, chronic
kidney disease and rheumatoid arthritis [98 - 100]. In healthy subjects, a 25(OH)D3 <25 mmol/l (10 ng/ml) is associated
with  a  significantly  lower  brachial  artery  flow-mediated  dilatation  (FMD),  an  important  marker  of  endothelial
dysfunction,  with  respect  to  subjects  with  a  normal  vitamin  D  status.  Interestingly,  a  high-dose  supplementation
regimen has been reported to lead to a significant improvement of FMD [101]. Following this finding, the effect of a
vitamin  D supplementation  regimen  on  endothelial  dysfunction  has  been  investigated  in  different  trials,  leading  to
conflicting  results.  While  cholecalciferol  supplementation  significantly  increased  the  FMD  in  a  trial  conducted  on
patients  affected  by  essential  arterial  hypertension  and  hypovitaminosis  D  [102],  other  studies  presented  different
results.  However,  the  discrepancies  observed  could  depend  on  differences  in  the  studied  cohorts,  supplementation
regimens and endpoints used to define the outcome. In a trial recently published by Borgi et al. [103], the outcomes and
the supplementation regimen were similar to those of the study by Carrara et al. [102]. Borgi did not find any effect of
vitamin D supplementation on endothelial function. However, the populations studied were very different, being in this
last trial included overweight and obese subjects who are known to have an impaired bioavailability of vitamin D [104],
which could have biased the negative results. On the contrary, in a trial by Dalan et al. conducted on diabetic subjects,
different endpoints were used and cholecalciferol supplementation was based on a lower dose regimen, which could
justify the difference observed [105]. Therefore, these trials cannot be compared and further studies are required to
better clarify the impact of vitamin D supplementation on endothelial function.

2.2. Vitamin D and Arterial Hypertension

High blood pressure is a recognized risk factor for disease and premature death [106]. Blood pressure is regulated
by  different  mechanisms  that  include  sodium  and  fluid  balance  as  well  as  vasomotor  tone.  Both  mechanisms  are
affected by genetic and environmental factors, and are controlled by hormonal, nervous, paracrine, neuroendocrine and
intracellular feedback loops [107]. In vitro and in vivo data have suggested that vitamin D could be implicated in the
control of blood pressure through inter-related factors, such as the Renin-Angiotensin-Aldosterone System (RAAS),
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sympathetic  activation  and  genetics.  Vitamin  D  has  been  shown  to  exert  inhibitory  effects  on  the  RAAS  through
modulation of the renin gene via VDR-dependent mechanism [108].  Mice lacking the VDR were prone to develop
excess plasma renin activity and hypertension [109], as well as increased susceptibility to obstructive renal injury [110].
All these effects could be prevented by treatment with ACE inhibitor or AT1 receptor antagonism. Similar negative
consequences were observed in mice silenced for the CYP27B1 gene, while 1,25(OH)2D3 administration favored the
regression of hypertension due to excess plasma renin activity, independent of calcium levels [111, 112]. However,
others observed that 1,25(OH)2D3 administration induced an increase in plasma renin activity [113]. Interestingly, 4-
week cholecalciferol administration to normal rats, at doses ranging from deficiency to toxic levels, generated a U-
shaped  dose-response  curve  on  indices  of  arterial  stiffness  and  systolic  hypertension,  implying  that  the  vasoactive
effects related to vitamin D likely reflect a balanced vitamin D status [114]. Studies in non-hypertensive individuals
maintained on dietary sodium balance showed that 25(OH)D3 deficiency was associated with increased renal vascular
RAAS  activity  as  well  as  increased  angiotensin  II  levels  [115].  Nevertheless,  the  effect  of  vitamin  D  on
renin–angiotensin system activation and blood pressure has been analyzed in a randomized control trial, and results
showed no benefit from correcting vitamin D deficiency on RAAS activity or blood pressure after 8 weeks [116].

Potential  RAAS-independent  mechanisms  have  also  been  claimed  to  explain  the  vitamin  D-related  effects  on
hypertension. Studies in rat showed that vitamin D deficiency results in increased cardiac contractility, hypertrophy and
fibrosis  and  has  profound  effects  on  heart  proteomics,  structure  and  function  [117].  The  mechanism  involves  an
increased expression of L-type calcium channels and sarcoplasmic reticulum calcium uptake [118]. Ablation of the
VDR in mice caused profound cardiac hypertrophy in the absence of significant modifications of the RAAS [119].
Moreover,  it  was shown that  vitamin D deficiency in  growing rats  promoted vascular  oxidative stress  and induced
changes in cardiac expression of 51 genes, including genes involved in the regulation of oxidative stress and myocardial
hypertrophy [120]. Based on these results, anti-inflammatory activity of vitamin D could involve vascular endothelium
and smooth muscle as a potential target of action. There is also evidence that vitamin D plays a role in sympathetic
activation.  Vitamin  D  deficiency  in  otherwise  healthy  subjects  is  associated  with  increased  levels  of  plasma
metanephrine, a marker of adrenal medulla activity [121], while a study discriminating on the sympathetic effects of
25(OH)D3  and 1,25(OH)2D3  suggested  that  1,25(OH)2D3  but  not  25(OH)D3  deficiency are  associated  with  dynamic
autonomic dysfunction [122]. Furthermore, many studies pinpointed the vasoactive properties of vitamin D through
modification of calcium homeostasis in vascular smooth muscle cells [123].

As  VDR  is  present  in  aortic  endothelial,  cardiomyocytes  and  vascular  smooth  muscle  cells  [124]  VDR
polymorphisms  and  mutations  affecting  vitamin  D  synthesis/metabolism  could  play  a  role  on  the  susceptibility  to
develop hypertension. BsmI polymorphism of the VDR gene was found to influence blood pressure in healthy men,
while a positive relationship was noted between 25(OH)D3 levels and blood pressure only in men and not women with
the BB genotype [125]. A study on an Indian cohort also found important associations between hypertension and Fok I
VDR polymorphism [rs2228570],  which generates  long and short  variants  of  the VDR, independent  of  sex,  family
history  and  smoking  [126,  127].  However,  allelic  frequencies  and  genotype  distribution  of  FokI  and  BsmI  VDR
polymorphisms  were  not  found  associated  with  hypertensive  status  or  renin  activity  in  a  small  study  on  Italian
individuals with essential hypertension [128]. A recent meta-analysis reported that polymorphism in the 24-hydroxylase
(CYP24A1)  gene,  which  controls  vitamin  D  metabolism,  were  the  most  significantly  associated  with  systolic  and
diastolic blood pressure [129]. Nevertheless, results from the Women’s Genome Health Study on 23,294 women and
the  International  Consortium  of  Blood  Pressure  on  69,395  men  and  women  of  European  ancestry  only  found
associations with genes related with vitamin D metabolism and signaling which, however, disappeared after multiple
testing corrections [130]. In a Mendelian randomization study on 146,581 individuals, a link was suggested between
low vitamin D and increased risk of hypertension using gene variants relating to 25(OH)D3 synthesis and metabolism,
i.e. DHCR7 rs12785878, CYP2R1 rs12794714, GC rs2282679, and CYP24A1 rs6013897 [131]. According to results,
each 10% increase in genetically determined 25(OH)D3 levels was associated with a significant 0.29 mmHg decrease in
diastolic blood pressure and 0.37 mmHg decrease in systolic blood pressure, conferring overall a 8.1% reduced risk of
hypertension.  This  finding suggests  that  genetically affected risk factors  related to the VDR are causally related to
clinical  outcomes  [132].  On  the  other  hand,  there  is  no  evidence  of  a  convincing  relation  between  DBP  and
hypertension except for a Mendelian randomization study based on results from the Canadian Multicentre Osteoporosis
Study, which however failed to document any association between DBP polymorphism rs2282679 and arterial blood
pressure [133].

Studies on oral supplementation with vitamin D is found to lower blood pressure in hypertensive rats [134, 135]. In
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humans, cross-sectional data suggest an association between low vitamin D intake (<400 IU per day) and an increase in
blood pressure [136], and one study in black participants reported dose-dependent reductions in systolic blood pressure
after 3 months of supplementation with 1000 IU, 2000 IU, and 4000 IU of vitamin D per day, i.e. 0.66, 3.4, and 4.0 mm
Hg, respectively [137]. However, evidence from randomized controlled trials has not provided consistent evidence of a
benefit.  In an interventional study on vitamin D deficient elderly women, a combination of calcium and vitamin D
supplementation was found to have a greater lowering effect on blood pressure than calcium alone [138]. Another study
on cholecalciferol supplementation by a dose that effectively increased vitamin D levels during winter months, showed
no effects on 24-h blood pressure, yet a post-hoc subgroup analysis of 92 subjects with baseline 25(OH)D3 levels <32
ng/ml  showed  significant  decreases  in  24-h  systolic  and  diastolic  blood  pressure  [139].  Oppositely,  a  trial  on
participants  with  arterial  hypertension  and  25(OH)D3  levels  below  30  ng/mL  failed  to  show  significant  effects  of
cholecalciferol supplementation on 24-hour systolic ambulatory blood pressure and several cardiovascular risk factors,
while  it  pinpointed  a  significant  increase  in  triglycerides  [140].  Similarly,  other  studies  found  that  vitamin  D
supplementation did not reduce blood pressure in individuals with prehypertension or stage I hypertension and vitamin
D deficiency [141].

Weaknesses inherent in observational studies, such as reverse causation, are a possible source for discrepancies
between these studies, as well as differences in the therapeutic regimens and duration of vitamin D supplementation, or
in baseline differences in 25(OH)D3  concentrations, blood pressure or obesity. Moreover, people with hypertension
might move less outdoors or have poorer health than those moving actively. While current evidence remains elusive, it
remains to be demonstrated that larger randomized controlled studies could really add more evidence of the benefits of
vitamin D in cardiovascular health.

2.3. Vitamin D and Insulin Sensitivity

Many studies have provided in vitro and in vivo evidence that vitamin D has an effect on glucose metabolism, and
hypovitaminosis D seems to detrimentally impact on insulin sensitivity both directly and indirectly via negative effects
sorted by secondary hyperparathyroidism [142].

This association has been hypothesized on the basis of observational in vivo data. In a cross-sectional study on 3577
US adolescents, lower vitamin D concentrations were independently associated with Fasting Plasma Glucose (FPG),
with  the  risk  of  Impaired  Fasting  Glucose  (IFG)  being  doubled  in  patients  at  the  lowest,  compared  to  those  at  the
highest quartile of vitamin D [143]. Similar results have been obtained on a large cohort of adults, in a recent study
which proved an inverse association between 25(OH)D3 plasma levels and FPG [144]. Moreover, vitamin D status was
inversely  associated  to  HbA1C,  as  previously  reported  in  other  cross-sectional  studies  [145,  146].  A  recent  meta-
analysis proved that the inverse association between 25(OH)D3 levels and FPG, as well as HbA1c, is confirmed both in
diabetic and in nondiabetic subjects [147]. Furthermore, vitamin D predicts insulin resistance; in fact, 25(OH)D3 plasma
concentrations have been inversely related to the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)
both in children and in adults [148 - 150]. Finally, 25(OH)D3 is directly correlated to 2-hours plasma glucose after an
oral  glucose  tolerance  test  [151].  Consistently,  a  higher  prevalence  of  hypovitaminosis  D  was  reported  in  diabetic
patients compared to healthy controls in different populations [152, 153].

Beside these cross-sectional data, longitudinal studies strengthened the hypothesis that hypovitaminosis D could be
detrimental for glucose metabolism. In 2012, Gagnon et al. published the results obtained in the Australian Diabetes,
Obesity, and Lifestyle Study (AusDiab), in which baseline and 5-years follow-up data on 11.247 adults demonstrated
that  higher  25(OH)D3  levels  were  protective  against  the  development  of  metabolic  syndrome.  Interestingly,  lower
baseline 25(OH)D3 concentrations were predictive of a higher HOMA-IR and FPG after 5 years of follow-up [154]. In
a pooled analysis  of  two nested case-control  studies conducted on a Finnish population,  along a 22-year  follow-up
period, vitamin D levels were protective against the development of T2DM [155]; consistently, Forouhi et al. reported
an inverse association between baseline 25(OH)D3 levels and the 10-years risk of T2DM development [156]. However,
these observations were not confirmed in another prospective cohort, when the effect of vitamin D was corrected for
other relative determinants [157].

Taking into account the large number of observations published on this topic in the last  few years,  while many
controversies  still  exist,  there  is  a  predominance  of  data  suggesting  a  beneficial  role  for  vitamin  D  in  glucose
metabolism. However, the mechanisms by which vitamin D regulates glucose homeostasis are only partly understood
and many aspects still deserve a deeper insight.
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It is now evident that vitamin D is able to both enhance insulin secretion and improve insulin sensitivity. In fact,
VDR  is  expressed  by  pancreatic  cells  and  1,25(OH)2D3  is  able  to  directly  stimulate  insulin  secretion  [158,  159];
moreover, 1,25(OH)2D3 upregulates the transcription of the insulin receptor in vitro [160]. As a further clue, different
VDR  polymorphisms  have  been  identified  and  some  of  them  have  been  related  to  glucose  metabolism,  with  a
significant effect determined by geographical belonging. In a recent meta-analysis on 28 studies and 9232 participants
evaluating the effect of VDR variants on insulin sensitivity, the association between insulin resistance-related diseases
and VDR polymorphisms ApaI, BsmI, FokI variant was confirmed in dark-pigmented Caucasians and Asians, but not in
Caucasian with white skin [161]. The mechanisms by which VDR regulates the response to insulin are still far from
being completely elucidated. However, VDR knock-out in mice muscle cells causes important effects on the insulin
signalling. The skeletal muscles account for 80% of insulin-stimulated whole-body glucose disposal [162], playing a
relevant role in the pathogenesis of insulin resistance. A putative mechanism of action has been recently proposed and it
is related to the activity of Forkhead box O1 (FOXO1). FOXO1 is a downstream negative regulator of insulin signalling
which, during fasting, promotes gluconeogenesis in the liver. After food intake, FOXO1 activity is inhibited in liver and
muscle cells by insulin [163]. VDR KO mice develop insulin resistance and glucose intolerance, which are paralleled by
increased expression and activity of FOXO1. Moreover, when muscle cell lines are treated with 1,25(OH)2D3 FOXO1
expression and activation are downregulated. Taken together, these findings suggest that: vitamin D regulates insulin
signalling in muscle cells and the KO of vitamin D activity leads to the development of insulin resistance; vitamin D
action on muscle cells is VDR mediated; a deficient vitamin D signalling induces an increase in FOXO1 activity which
can be suppressed by the administration of 1,25(OH)2D3 which, in turn, could be supposed to be a promising therapeutic
tool in insulin resistance [164]. There are further data, obtained in animal models, which support the hypothesis that the
positive effect of vitamin D on muscle cells can be therapeutically exploited. For example, in mice affected by diet-
induced obesity and insulin resistance, the administration of vitamin D significantly improves the response to an oral
glucose load and ameliorates the HOMA index; this is related to a direct effect on muscle cells which is paralleled by a
reduction of lipid storage and myosteatosis [165, 166]. Similar data have been obtained on diabetic rats [167].

Unfortunately,  randomized clinical trials (RCTs) in humans led to conflicting results being therefore absolutely
inadequate to support the use of vitamin D as a therapeutic tool for the improvement of glucose metabolism. In fact,
recent  trials  failed to disclose a beneficial  effect  for  vitamin D supplementation on insulin sensitivity in vitamin D
deficient  overweight/obese [168]  or  in  diabetic  subjects  [169 -  171],  despite  the use of  large cholecalciferol  doses.
Consistently, the weekly administration of 20,000 IU of cholecalciferol was shown to be ineffective in preventing the
progression  from  prediabetes  to  T2DM  in  an  RCT  conducted  on  511  patients.  In  obese  subjects,  high-dose
cholecalciferol administration was recently shown able to selectively increase plasma levels of high-molecular weight
adiponectin, a mediator of glucose homeostasis [172].

The  inconsistency  of  data  from  RCTs  is  reflected  in  the  divergent  conclusions  obtained  by  the  meta-analysis
published on this topic. In fact, a very recent meta-analysis on 24 controlled trials showed a beneficial effect of vitamin
D supplementation, at a minimum daily dose of 4000 IU, on FPG, HbA1c and HOMA-IR [173]; on the contrary the
large prevalence of meta-analysis failed to disclose an effect for vitamin D supplementation in T2DM patients [174] but
also in normoglucotolerant and prediabetic subjects [175, 176].

2.4. Vitamin D and Atherosclerosis

Systemic inflammation, glucose metabolism impairment and endothelial dysfunction are well-known risk factors for
atherosclerosis;  the  observation  that  vitamin  D  has  both  an  anti-inflammatory  activity  and  a  positive  effect  of
endothelial  function  led  many  authors  to  postulate  a  potential  detrimental  effect  of  vitamin  D  deficiency  on  the
development and the progression of atherosclerotic plaques in vivo. In the last years, many data have been reported in
literature, supporting this hypothesis.

Lower 25(OH)D3 levels have been associated with higher IMT and to an increased risk of atherosclerotic plaques,
although  these  findings  are  controversial  and  still  debated  [177,  178].  A  possible  explanation  of  these  different
conclusions  could  be  related  to  differences  in  patients  selection,  being  the  association  more  convincing  amongst
diabetic  subjects  [179,  180]  than in  the  general  population.  Moreover,  the  correlation between IMT and 25(OH)D3

levels sounds relatively weak and, probably, a large number of subjects is required to disclose this association [181].
Recently, a meta-analysis published by Lupoli et al. included data from twenty-one studies (3,777 vitamin D-deficit
patients and 4,792 controls) evaluating the association between vitamin D and IMT, and 6 studies (1,889 vitamin D-
deficient patients and 2,883 controls) evaluating the different prevalence of carotid plaques. According to this analysis,
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vitamin D deficiency was associated with a higher IMT and an increased prevalence of carotid plaques; the attributable
risk for vitamin D deficiency was 35.9%. As previously stated, the risk of carotid plaques seems to be even higher when
vitamin D deficiency develops in association with T2DM (OR: 2.29, 95%CI: 1.03-5.11, p=0.043 in general population;
OR: 3.27; 95%CI: 1,62-6.62, p=0.001 in diabetic subjects) [180].

Importantly, there is evidence that vitamin D levels are inversely related to the risk of Coronary Artery Disease
(CAD). In a large prospective cohort on 1859 patients undergoing a non-urgent coronary angiography, low vitamin D
levels were related to the prevalence and severity of CAD [182]. The detrimental impact of hypovitaminosis D on the
development of CAD seems to be influenced by gender. In fact, hypovitaminosis D seems to be a more relevant risk
factor for CAD in females than in males [183]. However, also middle-aged male patients with vitamin D deficiency
show and increased risk for coronary artery calcification assessed by computed tomography [184]. It is important to
underline that, as per the association with IMT, if on one side many authors agreed in identifying hypovitaminosis D as
a risk factor for a more severe CAD [185], according to others, vitamin D levels are not predictive of the extent of
atherosclerotic coronary disease [186, 187]. To summarize, although vitamin D has strong pre-clinical data supporting
its  involvement  in the development of  atherosclerosis  and CAD, clinical  data are conflicting and,  again,  this  is  the
results of the profound differences which distinguish one study from another: the cohorts are generally different for
gender and age and for comorbidities, which is particularly relevant if we consider stronger evidence for vitamin D
involvement in the pathogenesis of atherosclerosis in diabetic subjects. Recently, an association between 25(OH)D3

levels  and  cardiovascular  risk  factors  has  been  observed  in  patients  affected  by  hypopituitarism,  underpinning  the
potential role of contextual endocrine disorders in strengthening the detrimental effect of hypovitaminosis D [188].
Moreover, CVDs are the result of a complex pathogenetic model which includes many different risk factors; even in
prospective studies, the control of all these elements might be difficult. Finally, different imaging techniques have been
used and this is obviously a factor affecting the sensitivity in the detection of subclinical atherosclerosis. Novel imaging
techniques, such as intravascular imaging modalities might be considered in the future to better disclose the role of
vitamin D in the pathogenesis of CAD. However, at the moment, data are still conflicting and not enough persuasive of
the effective role of vitamin D in vivo.

Finally, it is still debated whether the postulated association of vitamin D with coronary and peripheral vascular
diseases is the result of hypovitaminosis per se or the effect of secondary hyperparathyroidism accompanying vitamin D
deficiency. In fact, serum PTH concentration, but not vitamin D, has been directly associated with IMT in a large cohort
of more than 8.000 patients [189]. Similarly, hyperparathyroidism has been associated to the extent of CAD [190].

Although evidence about the role, in vivo, of hypovitaminosis D as a risk factor for atherosclerosis are inconclusive,
there is a general consensus on the significance of vitamin D status as a general marker of good health. In a very recent
meta-analysis including almost 27.000 subjects recruited in eight different prospective studies, the global mortality risk
significantly increased for lower 25(OH)D3  concentrations [191].  Interestingly,  hypovitaminosis  D was specifically
associated with cardiovascular mortality. This observation replicates the results of a very large meta-analysis by Zhang
et al., in which a total of 34 publications with 180.667 participants were considered. The authors described an inverse
association between plasma 25(OH)D3 concentration and total cardiovascular events and cardiovascular mortality [192].
However,  different  trials  have  tested  the  effect  of  cholecalciferol  supplementation  on  cardiovascular  health.
Specifically, in a trial on 36.282 postmenopausal women randomized to either calcium and vitamin D or to placebo and
followed-up for seven years, the treatment had no effect on cardiovascular and cerebrovascular risk [193]. Similarly, in
a subgroup of the same study, calcium/cholecalciferol supplementation seems not to affect the development of coronary
artery calcification [194].

On this basis, no recommendations can be made to date for the use of vitamin D supplementation in the prevention
and treatment of cardiovascular diseases, as well as for the other extra-skeletal chronic diseases.

CONCLUSION

In  conclusion,  vitamin  D  is  a  pleiotropic  hormone,  the  activity  of  which  is  supposed  to  be  much  wider  than
previously known at the cardiovascular level. There is a significant gap between the large evidence relating vitamin D
activity  to  vascular  function  and  healing  in  vitro,  and  the  relatively  poor  strength  of  in  vivo  data,  which  are  often
conflicting and/or inconclusive. While the achievement of a satisfactory vitamin D status can be considered advisable as
a general marker of good health, there is still no consensus on the screening and correction of hypovitaminosis D for
cardiovascular health.
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Large population-based studies are thus required to strengthen the currently available evidence, and to contribute to
the understanding of the causal mechanisms underlying the association between vitamin D and cardiovascular health
and diseases.
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